Product catalogue

10

- At the heart of Flow control

New generation of Dynamic Balancing Valves

Frese S

Why allocate more time and money than necessary balancing heating and cooling systems? The new Frese S dynamic balancing valve is simple to select and easy to commission. Just set the flow and the Frese S valve will ensure quick and reliable commissioning. Once set, no adjustments are required even if the pressure varies or the system is changed. Simply check that the pump pressure at the index valve is correct and the job is done. It is as simple as it gets.

The Frese S valve is compact by design and requires less space for installation as reliable flow is maintained even when installed next to a pipe bend or fitting. The clear scale on the lockable handle ensures that flow setting is simple and user friendly whilst the integral P/T plugs allow verification of pressure.

·Max differential pressure:	400 kPa		
·Temperature range:	-10 to+120°C		
·Dimensions:	DN15-DN50		
·Material:	DZR brass		
·Flow range up to:	10,4 m³/h		
·Static pressure:	PN25		
·For cooling and heating applications			

For more technical informations please see our website:

www.frese.eu

HEATING & COOLING APPLICATIONS

DS/EN ISO 9001:2008 Certificat

	Introduction to Automatic Balancing		1
٩	Flow Cartridges	Quickguide ALPHA Cartridges	2
	Automatic Balancing Valves (Cartridge Solution)	FRESE ALPHA	3
No.	Automatic Balancing Valves (Externally Adjustable)	FRESE S	4
Carlos Carlos	Automatic Balancing & Modulating Control Valves (Externally Adjustable)	FRESE OPTIMA	5
-Re-	Automatic Balancing Valves & On/Off Control Valves (Cartridge Solution)	FRESE EVA	6
E STA	Complete Solutions for Balancing and Temperature Control	FRESE MODULA	7
*	Differential Pressure Control Valves	FRESE PV FRESE PVS FRESE YDF-2F	8
T man of	Accessories		9
	DOMESTIC WATER APPLICATIONS		
	Thermostatic Circulation Valves	CIRCON⁺ TEMCON⁺	10
	Mixing Valves	MIXCON	11
	Project References		12
www.fres	se.eu	ese	

CERTIFICATE

IQNet and DS hereby certify that the organization

Frese A/S Sorøvej 8 4200 Slagelse Danmark

for the following field of activities

Development, production, sale and delivery of Automatic Balancing Valves, fittings and components for the HVAC and sanitary applications

> has implemented and maintains a Management System which fulfils the requirements of the following standard

DS/EN ISO 9001:2008

Issued on: Validity date: DS Certified since:

2009-09-04 2010-09-08 1992-09-08

Registration Number : DSC00112

atures

René Wasmer President of IQNet

Monstian Inie

Christian Ilsøe Managing director

(R)

IQNet Partners*:

AENOR Spain AFAQ AFNOR France AIB-Vinçotte International Belgium ANCE Mexico APCER Portugal CISQ Italy CQC China CQM China CQS Czech Republic Cro Cert Croatia DQS Germany DS Certificering A/S Denmark ELOT Greece FCAV Brazil FONDONORMA Venezuela HKQAA Hong Kong China ICONTEC Colombia IMNC Mexico Inspecta Certification Finland IRAM Argentina JQA Japan KFQ Korea MSZT Hungary Nemko AS Norway NSAI Ireland PCBC Poland QMI Canada Quality Austria Austria RR Russia SAI Global Australia SII Israel SIQ Slovenia SIRIM QAS International Malaysia SQS Switzerland SRAC Romania TEST St Petersburg Russia YUQS Serbia IQNet is represented in the USA by: AFAQ AFNOR, AIB-Vinçotte International, CISQ, DQS, NSAI Inc., QMI and SAI Global * The list of IQNet partners is valid at the time of issue of this certificate. Updated information is available under www.iqnet-certification.com

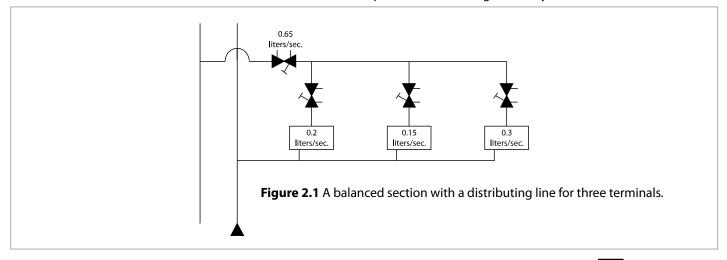
Scope

This section contains an account of why it is necessary to balance a water distribution system for the distribution of heating or cooling effects, the considerations that should be made before the system is designed, the result of balancing and the difference between a static and a dynamic balancing valve.

What is a balanced system??

Definition:

A distribution system is in balance when the flow in the whole system (through the component terminal lines, distributing lines and main distributing lines) corresponds to the flow rates that were specified for the design of the system.


The dimensioned "hydraulic" condition of operation can be simulated by means of the opening of all the valves regulating the flow depending on the temperature (room temperature, outdoor temperature or medium temperature) either as manual radiator valves, self-regulating thermostatic valves or electrically actuated valves.

In practice it is recommended that balance is established by means of a number of balancing valves that can be pre-set individually to an assessed orifice dimension. Together with the rest of the system they will then establish the exact flow resistances to ensure a correct distribution of the flowing medium.

Figure 2.1 shows an outline of a minor section of a balanced water distribution system. Referring to the figure below the distribution system is in balance when the system contains a number of regulation valves that have been pre-set to be mutually dependent so that the flow through the component terminal lines, distributing lines and main distributing lines corresponds to the flow rates that were specified for the design of the system.

In an analogue electric system the balancing valves are comparable with a variable resistance, and the resistance of the pipes with the corresponding wiring resistance, and the effective heating-/cooling surfaces with a load resistance (**Fig. 2.2**).

The distribution of the electric power through the component load resistances, distributing lines and main distributing lines, depends on the distribution of the resistance in the circuit, similarly to a water distribution system.

The need for Balancing

If the correct balancing of the system has not been established, this will result in an unequal distribution of the flow, so that there will be a surplus effect in some of the terminals, whereas the effect will be inadequate in others. The result of this will be that the wanted heating/chilling will not be ensured in all parts of the installation.

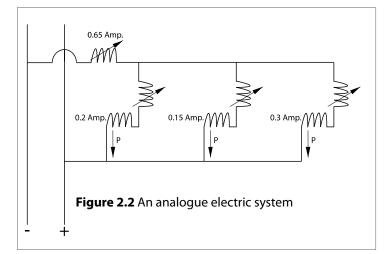
In practice it is not possible to make a correctly balanced system by manipulation of the piping or alteration of the pipe dimensions only.

Only a correct adjustment of the balancing valves shown in **figure 2.1** will ensure the correct distribution of the flow in the system.

Design Considerations

The engineer in charge of the design and installation of a system should aim at:

- Substantial operating effectiveness
- Achievement of the required comfort at the lowest operating costs possible
- Avoiding unnecessary waste of energy resources.


For the design and selection of equipment for the balancing and control of a system the following should be taken into consideration:

- (A) Type of application
- (B) Type of the building in question
- (C) The required room temperature/comfort
- (D) Type of the hot domestic water supply
- (E) Acceptable deviations from the comfort parameters
- (F) Minimization of the primary energy
- (G) Application of heat recycling
- (H) Economic factors

The result of (C), (E) and (F) is very much dependent on the correct distribution of the flow in the system. Therefore the quality of the balancing should meet the the required comfort and energy efficiency.

The quality of the balancing is partly dependent on the type of the required balancing valves (static versus dynamic valves, ref. the following section), compared with the required adjustment method, and partly the design of the required components for the verification of the flow in the system. The following quality parameters should be specified during the phase of design:

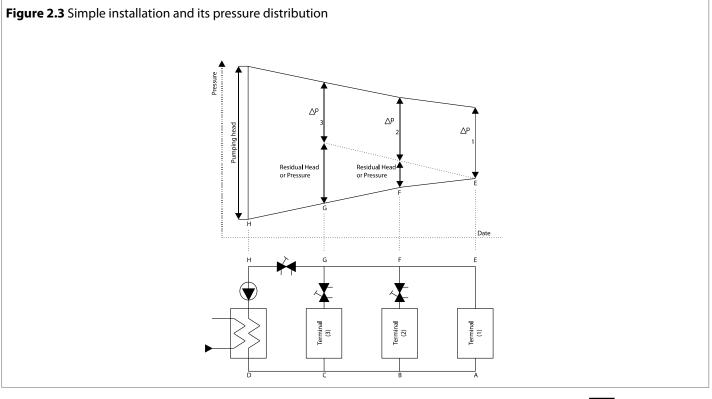
- Type of balancing valves
- Adjustment method
- Verification of flow, where and how?
- Acceptable deviations of the flow

The result of Balancing

A satisfactorily balanced installation will show the following results:

- Correct flow in boilers and chillers
- Correct distribution of flow and effect in the whole system
- Compatibility between all flow rates in primary and secondary lines

These results will ensure the following benefits:


- The room temperature is adjustable within the specific deviations
- Energy saving as a result of the favourable conditions of the requipment that controls the energy transfer
- Achievement of the required indoor climate.

Why are balancing Valves required?

We answer that question on the basis of figure 2.3

The figure shows a schematic outline of a simple installation that contains a boiler/chiller, three identical terminals with the same flow requirement, and a pump to make the heat transfer medium, i.e. water or water/glycol circulate in the system. The top half of the diagram represents the pressure distribution throughout the schematic layout shown in the lower half of the diagram. The branch 'nodes' are indicated on both the distribution diagram and the schematic by the smae lettering.

In the piping there will be friction between the flowing medium and the pipe wall. This frictional loss makes the pressure decrease along the pipe in the direction of the flow. This will be seen from the falling pressure line between the branching points.

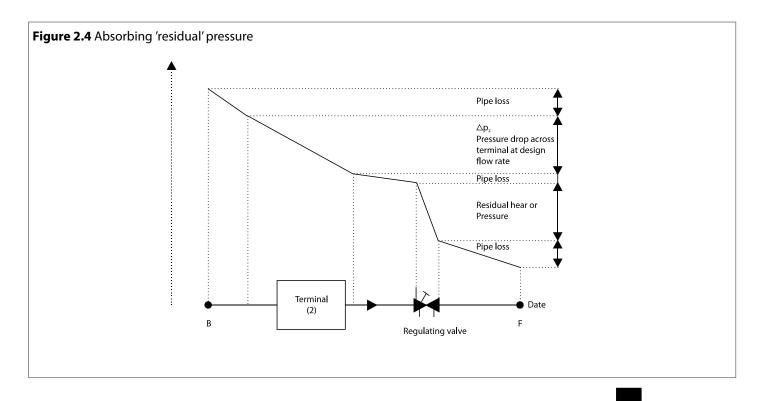
The pressure drop $\Delta p1$ is referred to as the 'index circuit'. The index circuit is the circuit that has the highest resistance to flow. It is normal for this to be the circuit most remote from the pump.

This pressure drop can be found by means of the equation $\Delta p 1 = R_1 \times (q_v \times P)^n$, in which the resistance of the terminal R1 and the wanted flow q v are known values.

The pressure drop across the three identical terminals will be the same, provided the same flow is required through all of them, i.e. $\Delta p 1 = \Delta p 2 = \Delta p 3$.

In order to bring about this identical pressure drop across the terminals and associated piping it is necessary to connect another resistance in series with the resistances of the terminals, so that the residual pressure drop between branching points BF and CG can be absorbed.

If the installation in question is not equipped with balancing valves after terminals (2) and (3), the flow through the three terminals will vary so that terminal (3) will be exposed to the major flow, terminal (2) to a smaller flow, and terminal (1) to the smallest flow. In that case the system will not be in the required state of balance.


Figure **2.4** shows the distribution of the pressure drop between branching points BF. From this you will see that the adjustment of the regulating valve to the required resistance value has to be carried out with regard to not only the terminal but also the connecting pipes.

The final adjustment is usually carried out by indirect measurement of the flow through the regulating valve (ref. chapter 6) simultaneously with measurement of the flow through terminal (1).

The regulating valve to terminal (2) is to be adjusted to ensure that the proportion of the measured flow rates through terminals (1) and (2) is the same as the one between the indexed flow rates between the two terminals.

Hereafter the valve is adjusted to terminal (3) to ensure that the proportion between the measured flow rates through terminals (3) and (2) is the same as the one between the indexed flow rates between the two terminals.

This adjustment method is called the 'proportional method'.

The Difference between a Static and a Dynamic Balancing Valve

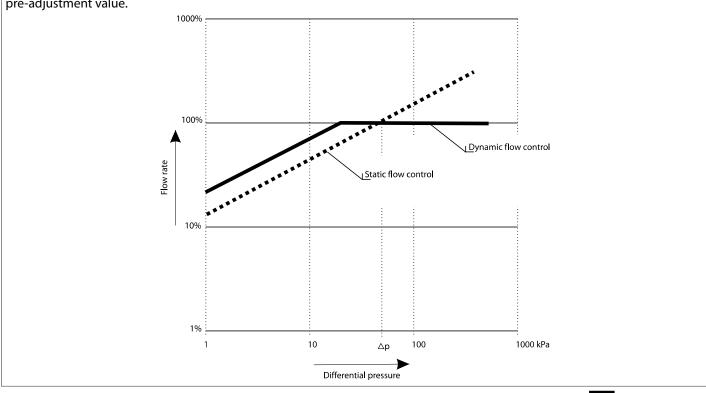
Usually you will not find an indication of the resistance value of a valve in valve catalogues and data sheets. On the other hand, the producer always states a flow coefficient referred to as kv or cv (American products). This is also called the flow coefficient of the valve.

The flow coefficient of kv is defined to be the flow of water (density 1 kg/liter) through the valve, when the differential pressure across the valve is 1 bar. The designation of this flow is m³/hour.

The flow coefficient of cv is defined as the flow of water (density 1 kg/liter) through the valve, when the differential pressure across the valve is 1 psi (lb/inch2). The designation of this flow is GPM (US gallon/min.).

Hereafter the mathematic coherence between the flow and the differential pressure of the valve can be expressed as follows:

 $q_v = K_v \sqrt{\Delta/\rho_r}$ $q_v in m^3/hour when \Delta p$ is in bar (gauge) $q_v = c_v \sqrt{\Delta/\rho_r}$ $q_v in GPM$ (US) when Δp is in psi As regards the 2-position and balancing valves, the indicated flow coefficient of kv refers to the completely open valve.


A feature of a static circuit balancing valve is that the open orifice area (kv value) can be changed manually and fixed into a static value. The kv value can now be obtained by referring to the hand wheel position in relation to the calibration graph of the valve.

The valve should be equipped with 2 pcs. isolation test plugs to which the measuring equipment for indirect flow measurement can be connected.

The valve can be pre-adjusted on the basis of a calculated pressure distribution in the whole HVAC installation. Please note that the calculation of large, complex installations may involve a considerable inaccuracy. Further, the valve can be pre-adjusted on the basis of an adjustment after the installation, e.g. according to the 'proportional method'.

A dynamic circuit balancing valve is a new balancing valve that was introduced on the market within the last few years. One of its features is that it can be pre-adjusted to a given flow and be locked to ensure this flow.

Figure 2.5 The valve features of a static circuit balancing valve and a dynamic circuit balancing valve respectively at a given pre-adjustment value.

The valve is an automatic regulator valve that with a reference to the differential pressure automatically adjusts to the kv value necessary to maintain the required flow. The kv value of the valve automatically compensates for any changes of the differential pressure, so that the flow will never exceed the pre-set flow.

These valves are available in types that have been calibrated in the factory to the rated flow, and in types the indexed flow of which can be pre-adjusted by the user before or after the installation of the valve in the system, or from the outside as the system is working.

The valve can be used on the basis of the calculated flow without regard to the distribution of pressure in the system.

Figure 2.5 illustrates the difference between the static and the dynamic application in the form of flow variation as a function of the differential pressure across the valves at a given pre-adjustment.

As will be seen from the chart, the flow through the static valve will increase as the differential pressure increases, and decrease as the differential pressure falls, whereas the dynamic balancing valve will maintain a constant flow (within the regulation range) independently of the differential pressure within the dynamic balancing valve.

Further, please note that the indexed flow (100 %) through a static balancing valve will not be achieved unless the differential pressure across the valve is equal to the indexed differential pressure Δp .

When are Flow Measurement Devices equired?

Static Systems:

During the adjustment it should be possible to measure the flow through each terminal (coil in air-condition, not radiators in heating systems), distributing line, main distributing line and supply line.

The measurements will typically be carried out as an indirect measurement, i.e. measurement of the differential pressure converted into a flow value in relation to the k v value of the measured device. The measurements are carried out across each circuit-balancing valve with the k v value relative to the valve setting and the associated flow chart. The accuracy of the measured flow is not likely to be better than +/- 25 % dependent on the hand wheel position. This inaccuracy should be taken into consideration in connection with the verification of the flow. Still, it is of no particular importance to the relative comparison between the flow through the individual terminals and distributing lines during the balancing procedure.

Dynamic Systems:

Dynamic valves will typically balance the system at an accuracy of +/-5 % of the rated flow.

So, as direct measurements involve a degree of accuracy of +/- 25 %, it will be inappropriate to verify the flow through the individual terminals.

Instead, measurement/verification of the flow in the supply line is recommended.

For verification of the flow in the supply line it is recommended that a fixed orifice device is used with a specified accuracy which is +/-5% above that of the measured flow.

Where are Balancing Valves required?

Figures 2.6 and **2.7** show a section of the same system, in which **figure 2.6** has been designed as a static system, and **figure 2.7** as a dynamic system. The section contains one supply line for 3 main distributing lines, each of which has 3 distributing lines with 3 terminals each (totally 27 terminals).

1

Introduction

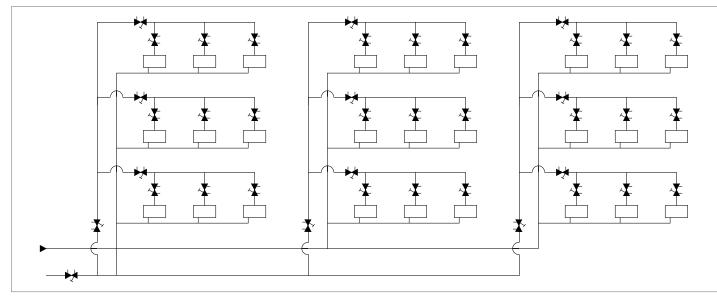


Figure 2.6 Water distribution system, static balancing

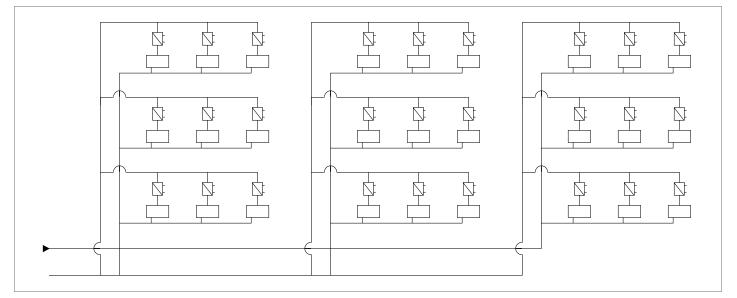


Figure 2.7 Water distribution system, dynamic balancing

In the static system each terminal has to be balanced in 9 groups of 3 terminals each. Hereafter the 9 terminal sections have to be balanced in 3 groups of 3 distributing lines each. After that the 3 main distributing lines have to be balanced. And finally the distributing line is adjusted to ensure the total design flow. This balancing procedure requires one balancing valve per terminal, one balancing valve per distributing line, one balancing valve per main distributing line and one balancing valve in the supply line.

In the dynamic system the individual terminals can be adjusted independently of each other. This simply requires one balancing valve per terminal.

Why use Dynamic Balancing instead of Static Balancing?

The adjustment of a dynamic system is quick and easy. All that is needed is the right pre-adjustment/balancing valve specified for the rated flow. There is no need for measurements for making comparisons between the flows of the individual balancing valves.

When the features of an installation are to be calculated, the only uncertain factor will be any inaccuracy in the calculated flow rate. When a dynamic balancing valve is used the uncertainty regarding the distribution of pressure in the installation and consequently the calculated kv values of the balancing valves is eliminated.

Balancing valves are only needed for the individual terminals. There is no need for balancing valves in the distribution lines, main distribution lines and supply lines.

The individual terminals are 100 % safe from overflow without regard to the load distribution in the installation and independent of the dynamic load variation in the installation. In an properly balanced static system overflow (up to 300-400 %) may occur through some of the terminals.

The rated flow can be changed in one or more sections of the installation without upsetting the balance in the rest of the system. If the dimensional basis of the whole system turns out to be wrong after the installation, a static system can only be re-adjusted if the whole installation is re- adjusted.

The result of the adjustment is better when compared to static balancing, because the rated flow is controlled at an accuracy of +/-5%.

After the installation the system can be changed/extended/ restored without regard to the changes of the balance in the existing part of the system. In a corresponding static system this would often involve a change of the total design of the system. From the foregoing, the following benefits of dynamic balancing can be stated:

- Quick and easy adjustment
- Independent of errors/unreliabilities in the calculated distribution of pressure in the installation.
- Fewer balancing valves
- 100 % safe from overflow
- Unproblematic re-adjustments
- More effective adjustment
- Great flexibility if the system is changed after the installation

Due to these benefits the features of the system design will typically be as follows:

- Cheaper installation
- Better comfort
- Greater flexibility
- More economical operation

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

706

Quick Reference - Combining Cartridges and Housings

			0	0	0
Fres			Cartridge typ 10, 11, 20	Cartridge typ 30, 40	Cartridge typ 50, 60
am	Female/Female	ALPHA DN15-25	25 - 2.448 l/h		
ESPLC	Female/Female	ALPHA DN25L-50		677 - 11.354 l/h	
HERE	Fixed end female/union	ALPHA DN15-25	25 - 2.448 l/h		
100	Fixed end female/union	ALPHA DN25L-40		677 - 11.354 l/h	
	For unions with actuator	EVA DN15/20/25	25 - 2.448 l/h		
<u> </u>	For couplings with actuator	EVA BASIC DN15	25 - 2.448 l/h		
	For Flanges	ALPHA DN50			3.820 - 45.000 l/h
Charles and the second	For Flanges	ALPHA DN65			3.820 - 45.000 l/h
	For Flanges	ALPHA DN80			3.820 - 45.000 l/h
	For Flanges	ALPHA DN100			3.820 - 90.000 l/h
Card)	For Flanges	ALPHA DN125			3.820 - 135.000 l/h
6313	For Flanges	ALPHA DN150			3.820 - 180.000 l/h
	For Flanges	ALPHA DN200			3.820 - 315.000 l/h
	For Flanges	ALPHA DN250			3.820 - 540.000 l/h
	For Flanges	ALPHA DN300			3.820 - 675.000 l/h
	For Flanges	ALPHA DN350			3.820 - 855.000 l/h
	For Flanges	ALPHA DN400			3.820 - 1.170.000 l/h

For Flanges

For Flanges

For Flanges

For Flanges

ALPHA DN450

ALPHA DN500

ALPHA DN600

ALPHA DN800

3.820 - 1.485.000 l/h

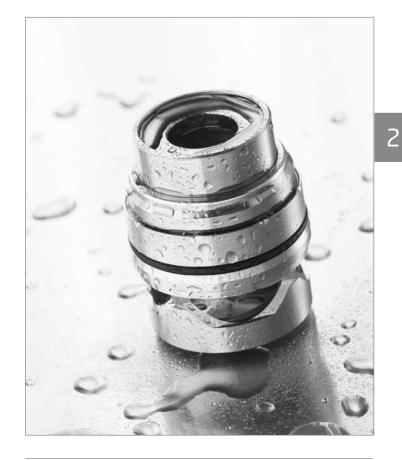
3.820 - 1.800.000 l/h

3.820 - 2.520.000 l/h

3.820 - 3.825.000 l/h

Application

Frese ALPHA Cartridges is used in heating and cooling systems for the distribution of flow in various sections of the system.


Technote

The dynamic balancing valve ensures easy and reliable balancing of the system, regardless of any fluctations in the differential pressure of the system.

Frese ALPHA Cartridges limits maximum flow in the system, and ensures the most economical operation.

Can be used in both variable and constant flow systems.

From small size valves (DN15) to big wafer types (DN800), from small heating units to district cooling applications, there is a Frese ALPHA Cartridge that guarantee the specified flow.

Benefits

- Quick and easy selection as only flow data are required.
- Security that the specified flow will not be exceeded.
- Easy to install according to pre-defined flow.
- Minimized commissioning time due to automatic balancing of the system.
- High comfort for the end-users due to right balance of the hydraulic system.
- The valves automatically find the hydraulic balance regardless of pressure fluctations in the system.
- No main circuit or branch balancing valves needed in the system.
- Improved response to water hammer due to the chock absorption by the rubber diaphragm of the cartridge.

Features

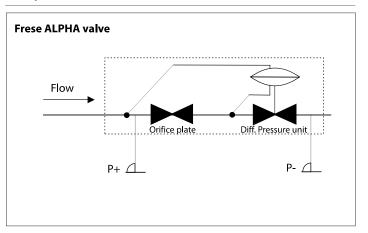
- Removable cartridge solution simplifies flushing procedure
- No minimum straight pipe lengths required before or after the valve.
- Built-in optional P/T plugs for needle system.
- Minimized friction and noise due to the patented cartridge design based on the metal-rubber diaphragm-metal contact.

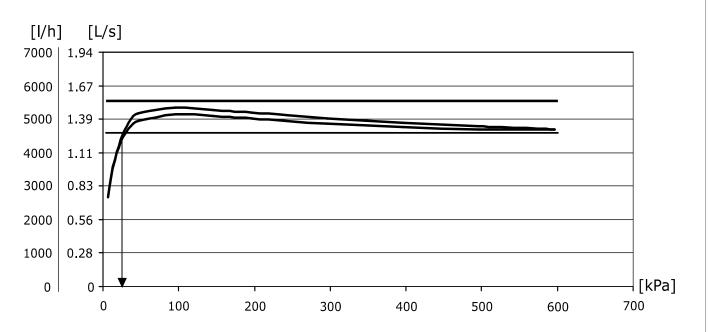
Function Frese ALPHA

The following applies to all flow control valves:

Technote

$$Q = Kv * \sqrt{\Delta p}$$


 $\begin{array}{l} Q = \text{Flow} \ (\text{m}^3/\text{h}) \\ Kv = \text{Opening area} \\ \Delta p = \text{Differential pressure (Bar)} \end{array}$


The Frese ALPHA cartridges, react to pressure fluctuations

so that the differential pressure across the pre-adjustment unit is kept constant.

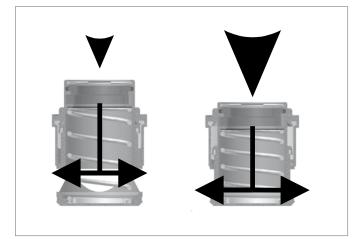
In that way a max. flow limit is ensured in accordance with the design.

Simplified outline ALPHA

Schematic view of the flow development for cartridge type 40, Frese no. 49-44176. Nominal flow 1.388 l/s / 4.816 l/h. The cartridge enters the pressure range at 23 kPa and maintains the flow at a constant level all the way till 600 kPa.

Indication of flow rate on the orifice plate

A four-digit number on the orifice plate is identical with the last four digits in the Frese number. The cartridge can be identified by means of this number and the corresponding flow rate can be read from the above flow rate tables.

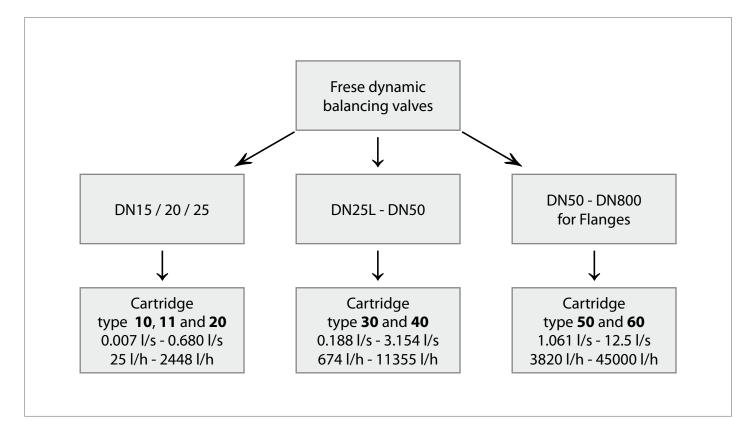

	High Pressure Frese no.	Flow [gpm]	Flow [l/s]	Min. ΔP [kPa]	
	49-1(1740)	3.52	0.222	16	
(49-11745	3.83	0.242	19	49= HP High Pressure
	49-11750	4.12	0.260	-21-	50= Low Pressure

Cartridge operation

When the pressure increases the spring will be compressed and thereby the piston will reduce the outlet area and vice versa. The result is a constant flow rate through the valve, independent of pressure fluctuations

Technote

Flow calculation

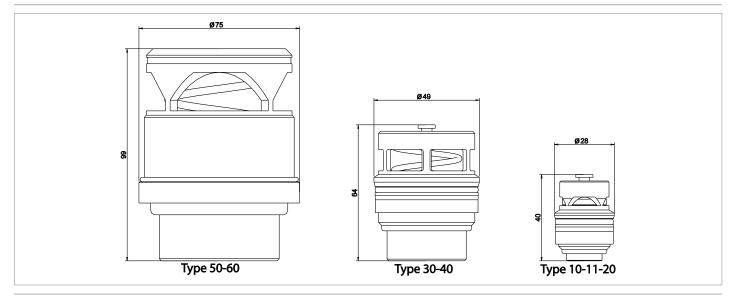

The flow through the valve can be identified by measuring the differential pressure (Δp) across the valve:

If the measured differential pressure is above the minimum Δp , the flow is the one stated on the graph for the valve.

If the measured differential pressure is below the minimum Δp , the flow can be found by using the formulas below.

. .

Flow Calculation			
$Q = Kv \cdot \sqrt{\Delta p}$	Q = m3/h $\Delta p = Bar$		
$Q = Kv \cdot 100 \cdot \sqrt{\Delta p}$	Q = I/h $\Delta p = kPa$		
$Q = \frac{Kv}{36} \cdot \sqrt{\Delta p}$	Q = I/s $\Delta p = kPa$		

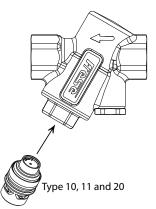


Technical data

Technote

Cartridge Material:	DZR Brass CW602N (Low pressure cartridges) DZR Brass CW 602N Tin/nickel plated (High pressure cartridges) AISI 304 (Wafer cartridges)
O-rings:	EPDM 281
Spring:	Stainless Steel 1.4310 (Low pressure & High pressure cartridges) AISI 316 (Wafer cartridges)
Diaphragm:	HNBR (Low pressure cartridges)
	HNBR reinforced (High pressure cartridges)
Medium Temperature:	-20 to + 120°C

Dimensions

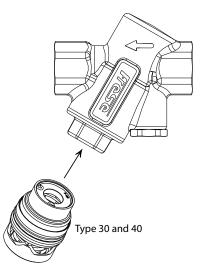


Specification text

High pressure cartridges DN15 - DN50:	The cartridge (for automatic balancing valve) should be made of tin/nickel plated brass; There should be only one differential pressure control range up to 600kPa; The flow rate should be defined by replaceable orifice plate. The diaphragm should be made of reinforced HNBR, the O-rings should be made of EPDM.
Low pressure cartridges	
DN15 - DN50:	The cartridge (for automatic balancing valve) should be made of brass; There should be only one differential pressure control range up to 350kPa; The flow rate should be defined by replaceable orifice plate. The diaphragm should be made of HNBR; the O-rings should be made of EPDM. umber. The cartridge can be identified by means of this number and the corresponding flow rate can be read from the above flow rate tables.
High pressure cartridges DN50 - DN800:	The cartridge for automatic balancing valve (flanged housing) should be made of stainless steel; There should be only one differential pressure control range up to 600kPa; The flow rate should be defined by replaceable orifice plate. The diaphragm should be made of reinforced HNBR, the O-rings should be made of EPDM.

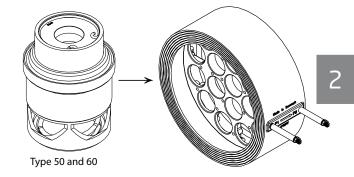
Cartridges for valves from DN15-DN25

		3 110111						
	Car	tridge [.]	type 10)				
High Pressure Frese no. Max. Δp 600 kPa	Low Pressure Frese no. Max. Δp 350 kPa	Flow [l/h]	Flow [l/s]	Flow [gpm]	Min. ΔΡ [kPa]	Κv		
	50-11150	25	0.007	0.11	7	0,09		
	50-11170	36	0.010	0.15	7	0,14		
	50-11190	43	0.012	0.20	7	0,16		
49-11210	50-11210	55	0.015	0.24	7	0,21		
49-11230	50-11230	75	0.021	0.33	8	0,27		
49-11260	50-11260	84	0.024	0.39	9	0,28		
49-11290	50-11290	104	0.029	0.46	10	0,33		
49-11300	50-11300	114	0.032	0.50	10	0,36		
49-11320	50-11320	129	0.036	0.57	11	0,39		
49-11350	50-11350	154	0.043	0.68	11	0,46		
49-11370	50-11370	175	0.049	0.77	12	0,51		
49-11400	50-11400	204	0.057	0.90	12	0,59		
49-11430	50-11430	241	0.067	1.06	12	0,70		
49-11460	50-11460	279	0.078	1.23	12	0,81		
49-11490	50-11490	320	0.089	1.41	13	0,89		
49-11510	50-11510	350	0.097	1.54	13	0,97		
49-11540	50-11540	400	0.111	1.76	13	1,11		
49-11570	50-11570	477	0.132	2.10	14	1,27		
49-11620	50-11620	545	0.151	2.40	14	1,46		
	Car	tridge [.]	type 1'	1				
49-11725	50-11725	615	0.171	2.71	14	1,64		
49-11730	50-11730	670	0.186	2.95	14	1,79		
49-11735	50-11735	736	0.204	3.24	14	1,97		
49-11740	50-11740	799	0.222	3.52	16	2,00		
49-11745	50-11745	870	0.242	3.83	19	2,00		
49-11750	50-11750	936	0.260	4.12	21	2,04		
	Car	tridge [.]	type 20	C				
49-20700	50-20700	1020	0.283	4.49	22	2,17		
49-20740	50-20740	1081	0.300	4.76	22	2,30		
49-20770	50-20770	1195	0.332	5.26	22	2,55		
49-20820	50-20820	1335	0.371	5.88	23	2,78		
49-20860	50-20860	1483	0.412	6.53	23	3,09		
49-20880	50-20880	1581	0.439	6.96	23	3,30		
49-20920	50-20920	1774	0.493	7.81	24	3,62		
49-20940	50-20940	1833	0.509	8.07	24	3,74		
49-20990	50-20990	2080	0.578	9.16	25	4,16		
49-21030	50-21030	2251	0.625	9.91	26	4,41		
49-21060	50-21060	2319	0.644	10.21	27	4,46		
49-21090	50-21090	2448	0.680	10.78	28	4,63		



2

Cartridges for valves from DN25L-DN50


	Car	<u>tridge</u> '	type 30	2		
High Pressure Frese no. Max. Δp 600 kPa	Low Pressure Frese no. Max. Δp 350 kPa	Flow [l/h]	Flow [l/s]	Flow [gpm]	Min. ΔΡ [kPa]	Kv
49-33073	50-33073	674	0.188	2.97	12	1,95
49-33082	50-33082	861	0.239	3.79	12	2,49
49-33089	50-33089	1020	0.283	4.49	12	2,94
49-33094	50-33094	1136	0.315	5.00	12	3,28
49-33096	50-33096	1190	0.331	5.24	12	3,44
49-33098	50-33098	1272	0.353	5.60	13	3,53
49-33102	50-33102	1349	0.375	5.94	13	3,74
49-33107	50-33107	1485	0.413	6.54	13	4,12
49-33111	50-33111	1567	0.435	6.90	14	4,19
49-33112	50-33112	1631	0.453	7.18	14	4,36
49-33118	50-33118	1815	0.504	7.99	14	4,85
49-33124	50-33124	2001	0.556	8.81	15	5,17
49-33125	50-33125	2044	0.568	9.00	16	5,11
49-33129	50-33129	2171	0.603	9.56	16	5,43
49-33132	50-33132	2271	0.631	10.00	17	5,51
49-33135	50-33135	2380	0.661	10.48	17	5,77
49-33138	50-33138	2498	0.694	11.00	18	5,89
49-33142	50-33142	2639	0.733	11.62	18	6,22
49-33148	50-33148	2871	0.797	12.64	19	6,59
49-33156	50-33156	3191	0.886	14.05	21	6,96
49-33161	50-33161	3407	0.946	15.00	22	7,26
49-33163	50-33163	3486	0.968	15.35	22	7,43
	Car	tridge [·]	type 40)		
49-44148	50-44148	3634	1.009	16	20	8,13
49-44152	50-44152	3681	1.023	16	21	8,03
49-44156	50-44156	4088	1.136	18	21	8,92
49-44164	50-44164	4315	1.199	19	21	9,42
49-44168	50-44168	4542	1.262	20	22	9,68
49-44173	50-44173	4769	1.325	21	22	10,17
49-44176	50-44176	4996	1.388	22	23	10,42
49-44182	50-44182	5450	1.514	24	24	11,12
49-44191	50-44191	5905	1.640	26	25	11,81
49-44194	50-44194	6360	1.767	28	26	12,47
49-44200	50-44200	6813	1.893	30	27	13,11
49-44205	50-44205	7267	2.019	32	28	13,73
49-44211	50-44211	7721	2.145	34	30	14,10
49-44217	50-44217	8176	2.271	36	31	14,68
49-44222	50-44222	8630	2.397	38	33	15,02
49-44229	50-44229	9084	2.523	40	34	15,58
49-44235	50-44235	9538	2.650	42	36	15,90
49-44241	50-44241	9990	2.776	44	38	16,21
49-44248	50-44248	10445	2.902	46	40	16,51
49-44250	50-44250	10900	3.028	48	42	16,82
49-44262	50-44262	11355	3.154	50	44	17,12

Cartridges for valves from DN50-DN800

Cartridges for valves from DN50-DN800					
		Cartrid	ge typ	e 50	
AISI 304 Frese no. Max. Δp 600 kPa	Flow [l/h]	Flow [l/s]	Flow [gpm]	Min. ∆P [kPa]	Kv
52-55179	3820	1.061	16.82	13	10,6
52-55184	3931	1.092	17.31	13	10,9
52-55189	4049	1.125	17.83	13	11,2
52-55194	4199	1.167	18.49	13	11,7
52-55200	4399	1.222	19.37	13	12,2
52-55206	4640	1.289	20.43	14	12,4
52-55213	4951	1.375	21.80	14	13,2
52-55220	5310	1.475	23.38	14	14,2
52-55227	5700	1.583	25.10	14	15,2
52-55235	6209	1.725	27.34	14	16,6
52-55243	6511	1.808	28.67	14	17,4
52-55251	7081	1.967	31.18	14	18,9
52-55260	7901	2.194	34.79	15	20,4
52-55269	8900	2.472	39.19	16	22,3
52-55279	10399	2.889	45.79	19	23,9
52-55287	11355	3.154	50.00	22	24,2
52-55292	12491	3.470	55.00	23	26,1
52-55298	13399	3.722	59.00	24	27,4
52-55303	14762	4.100	65.00	27	28,4
52-55308	15999	4.444	70.45	29	29,7
		Cartrid	ge typ	e 60	
52-66285	17037	4.733	75.02	34	29,2
52-66292	18148	5.041	79.91	34	31,1
52-66301	18797	5.221	82.77	35	31,8
52-66305	19467	5.408	85.72	35	32,9
52-66312	20464	5.684	90.11	35	34,6
52-66319	21527	5.980	94.79	36	35,9
52-66326	22449	6.236	98.85	36	37,4
52-66332	23482	6.523	103.40	36	39,1
52-66338	24531	6.815	108.02	37	40,3
52-66344	25621	7.117	112.82	38	41,6
52-66349	26528	7.369	116.81	38	43,0
52-66356	27686	7.690	121.91	38	44,9
52-66362	29157	8.099	128.39	38	47,3
52-66367	29954	8.320	131.90	39	48,0
52-66373	30976	8.605	136.40	39	49,6
52-66379	32260	8.961	142.05	40	51,0
52-66385	33565	9.324	147.80	40	53,0
52-66391	34953	9.709	153.91	40	55,3
52-66393	36336	10.093	160.00	42	56,1
52-66398	37685	10.468	165.94	43	57,5
52-66400	38607	10.724	170.00	44	58,2
52-66407	40971	11.381	180.41	46	60,4
52-66407H	45000	12.500	198.19	49	64,3

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

rese

Technote

Frese ALPHA - Automatic Balancing valve

Application

The Frese ALPHA Valves are particularly designed and manufactured for the automatic balancing of heating and cooling circuits.

The Frese ALPHA Cartridges - the second generation cartridges - are an integral part of the Frese ALPHA Valves limiting the flow at the specified level even under fluctuating pressure conditions.

The patented design of these cartridges introduces a replaceable orifice plate for higher flexibility and a resistant diaphragm for higher accuracy. From small size threaded valves (DN15) to big flanged type valves (DN800), from small heating units to district cooling applications, Frese ALPHA Valves guarantee the hydraulic balance of the system regardless pressure fluctuations.

Benefits

• Balancing of the system takes place automatically even under fluctuating pressure conditions

Design

- No need to use balancing valves in the distribution lines, main distribution lines and supply lines.
- Less time to define the necessary equipment for a hydraulic balanced system.
- No impact if the calculated distribution of pressure in the installation is not accurate.
- Security that the specified flow is also the real one
- No requirements on pipe lengths before and after the valve

Installation

- Minimized commissioning time due to automatic balancing of the system
- Cartridge solution makes flushing procedure very easy
- No need for oversized pumps and oversized control valves

Operation

- Energy savings due to elimination of overflows
- Higher comfort due to correct distribution of water in the system and to optimized function of the control valves

Features

Wide product range covering all applications:

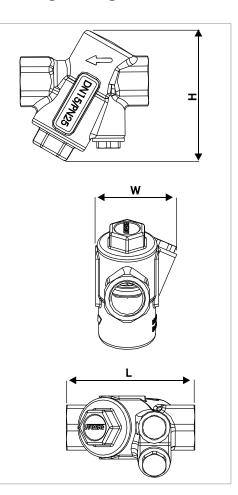
- sizes from DN15 to DN800
- different end connections (female/female, union connections, flanges)
- dezincification resistant brass, ductile iron.
- P/T plugs, drain, combi-drain.
- Kit solution with strainer and ball-valves, solution with integral ball-valve.
- Modifications & extensions of the system do not affect the hydraulic balance in the other parts of the system.
- Tamper resistant cartridge independent of flow regulation errors during commissioning and operation of the system.
- Self-cleaning cartridge not allowing dirt to comprosmise the accuracy of the valve.
- Resistant diaphragm between the moving parts of the cartridge eliminates friction, noise and impact from water hummer.

Frese ALPHA - Automatic Balancing valve

Female/Female threaded

Technote

A very simple and efficient solution for automatic balancing of heating/cooling circuits.


Technical data

Valve Housing:	DZR brass, CW602N
O-rings:	EPDM
Pressure class:	PN25
Temperature:	-20°C to + 120°C
Diff. Pressure Range:	7 - 600 kPa
Thread:	ISO 228

Frese product numbers are marked with an X. X represents the 5 different options available for different accessory features - see below. E.g. 49-9041 = Frese ALPHA DN32 equipped with 2 pcs. 1" P/T-Plugs.

Flow Cartridge is selected from Cartridge Catalogues and ordered under individual numbers.

Frese no.	Dimensions
49-900X	DN15
49-901X	DN20
49-902X	DN25
49-903X	DN25L
49-904X	DN32
49-905X	DN40
49-906X	DN50

Accessories		1		2		1	-	5	б		1.14	/&H
	Ð				Ŧ				Ŧ	Ŧ	are sta	ated in m]
		ocs plugs		ocs plugs	-	and valve	ar	idrain nd plugs		ocs olugs	L	Net Weight [kg]
Dimensions	W	Н	W	н	W	Н	W	Н	W	Н		
15/20/25	55	94	71	133	63	95	71	133	49	75	77	~0.50
25L/32/40/50	80	126	91	164	83	127	91	164	68	115	123	~1.45

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets.

Specification text

The valve shall operate by means of an automatic balancing cartridge with replaceable orifice plate and internal diaphragm. The pressure class of the valve shall be PN25. The valve housing shall be made of DR brass.

3

Technote

Frese ALPHA - Automatic Balancing valve

ALPHA kit

A kit solution containing an Alpha Female / Female Valve, a strainer and two isolation ball-valves.

Technical data

ALPHA Valve:

Valve Housing:
O-rings:
Seal:
Pressure class:
Temperature:
Diff. Pressure Range:
Flow range:
Thread:

Strainer:

Valve Housing:
Filter:
Seal:
Mesh:
Pressure class:
Temperature:
Thread:

Ball Valve:

Valve Housing: O-rings: Seal: **Pressure class: Temperature:** Thread:

Strainei

Valve

Bal

Dimensions

DN15

DN20

DN25

DN32

DN40

DN50

Dimensions

DN15

DN20

DN25

DN32

DN40

DN50

Weight [kg]

0.158

0.282

0.440

0.638

0.820

1.280

Weight [kg]

0.195

0.327

0.502

0.869

1.348

2.371

DR, Dezincification Resistant Brass EPDM PTFE **PN20** -20 to + 110°C ISO 228

41

50

62

71

78

96

DZR brass, CW602N

-20°C to + 120°C 7 - 600 kPa

Stainless steel

32 (0,5 mm) **PN16**

-20 to + 150°C ISO 228

L [mm]

56

69

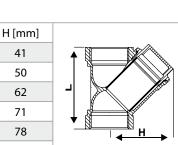
82

90

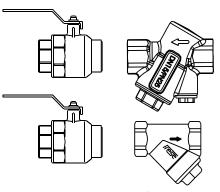
101

121

See Cartridge Catalogue


DR, Dezincification Resistant Brass

EPDM PTFE


PN25

ISO 228

PTFE

L [mm]	H [mm]	
62	44	
73	47	┍╼╔┙╝╴┍╸
85	55	
106	75	
113	82	│
135	94	

Flow Cartridge is selected from Cartridge Catalogues and ordered under individual numbers.

Please see accessories for feature selec-

Frese no.	Dimensions
49-9466	DN15
49-9476	DN20
49-9486	DN25
49-9496	DN25L
49-9506	DN32
49-9516	DN40
49-9526	DN50

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. The pipe system should be properly ventilited to avoid the risk of airpockets.

Specification text

The valve shall operate by means of an automatic balancing cartridge with replaceable orifice plate and internal diaphragm. The pressure class of the valve shall be PN25. The valve housing shall be made of DR brass. The housing of the strainer shall be made of DR brass; the filter shall be replaceable and made of stainless steel. The filter mesh shall be 32 (0.5 mm).

Frese ALPHA - Automatic Balancing valve

Fixed Female/Male for union connection

Technote

An automatic balancing valve with an integral ball valve and one union end for ease of installation

Technical data									
Valve Housing: O-rings: Seal: Pressure class: Temperature: Diff. Pressure Rang Flow range: Thread:	ge:	EPD/ PTFE PN25 -20% 7 - 60	5 5 C to + 120 00 kPa Cartridge	D⁰C	ue				
Frese product num	hers are			x	F	Frese no.	Dime	ensions	
X represents the 3 c						49-935X		N15	
ferent accessory fea						49-937X		N20	
E.g. $49-9431 = Frese$	e ALPHA	DN32 e	quipped	with 2		49-939X		N25	
pcs. 1″ P/T-Plugs.						49-941X DN25L			
Flow Cartridge is se	elected fr	om Cart	tridge Ca	talogues		49-943X DN32			
and ordered under	individu	al numb	pers.					N40	
Accessories	·	1	4			6L, W & H		/ 0	
	Ð		Ŧ		Æ	3 8	are st	ated in nm]	
	2 ជ 1" P/T	ocs plugs	Plug drain			2 pcs F plugs	L	Net Weight [kg]	
Dimensions	W	Н	W	Н	W	Н			
15/20/25	87	94	95	95	81	75	107	~0.71	
25L/32/40/50	124	126	127	127	112	115	160	~2.15	
	Frese no Lengh with on union	t ends		Frese no Lenght with on union	e e	oldering ends			
All threads are ISO	DN15	43-4	4310/132	15 mm	1 4	43-4102/12	7		
All threads are ISO								1! !	una (hath athulana and nuanulana)

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets.

Specification text

All threads are ISO

union connection. Length in mm.

type. Length is total

valve length with one

Material in contact

with water

DN20

DN25

DN25L

DN32

DN40

43-4312/132

43-4314/146

43-5330/200

43-5332/200

43-5334/202

The valve shall operate by means of an automatic balancing cartridge with replaceable orifice plate and internal diaphragm. The pressure class of the valve shall be PN25. The valve housing shall be made of DR brass. The housing shall have one fixed threaded end and one union end. The valve includes an integral ball valve with handle.

18 mm

22 mm

28 mm

28 mm

35 mm

42 mm

43-4103/127

43-4104/129

43-4105/128

43-5122/180

43-5123/197

43-5124/197

Frese ALPHA - Automatic Balancing valve

Fixed Female/Female for union connection

Technote

An automatic balancing valve with an integral ball valve and one union end for ease of installation

Technical data						
Valve Housing: O-rings: Seal: Pressure class: Temperature: Diff. Pressure Rang Flow range: Thread:	je:	EPDI PTFE PN2: -20% 7 - 6	5 5 C to + 12 00 kPa Cartridge		Je	
Frese product numb		X.	Frese no.	Dimensions		
X represents the 2 d	options		49-934X	DN15		
ferent accessory features - see below. E.g. 49-9421 = Frese ALPHA DN32 equip pcs. 1" P/T-Plugs.				with 2	49-936X	DN20
				witil Z	49-938X 49-940X	DN25
						DN25L
Flow Cartridge is se and ordered under				atalogues	49-942X	DN32
and ordered under	inaiviau	ai numi	Jers.		49-944X	DN40
Accessories	1 5 Image: Second sec			L, W are sta [mi	ted in	
		ocs plugs	Comb ar 2" P/T	nd	L	Net Weight [kg]
Dimensions	W	Н	W	Н		
15/20/25	87	94	103	133	129/129/146	~0.87
25L/32/40/50	124	126	135	164	195/195/200	~2.54
	Frese no Lengh with or union	t end				
All threads are ISO	DN15	43-4	4210/129			
type. Length is total valve length with one	DN20	43-4	4212/129	· ·		thylene and propyl th Frese Alpha. Stra
union connection	DN25	13-4	1211/116	1	and the state of t	

to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets.

Specification text

Material in contact

union connection.

Length in mm.

with water

DN25

DN25L

DN32

DN40

43-4214/146

43-5230/195

43-5232/195

43-5234/200

The valve shall operate by means of an automatic balancing cartridge with replaceable orifice plate and internal diaphragm. The pressure class of the valve shall be PN25. The valve housing shall be made of DR brass. The housing shall have one fixed threaded end and one union end. The valve includes an integral ball valve with handle.

Technote

Frese ALPHA - Automatic Balancing valve

Flanged ductile iron

A wafer-type valve containing, depending on the size and the design flow, up to 85 Frese ALPHA cartridges

Technical data

Valve Housing: O-rings: Fasteners: Pressure class: Temperature: Diff. Pressure Ra Flow range:	EP AI PN -2 ange: 13	uctile iron DIN 16 PDM SI 306 V16 (PN25) 0ºC to + 120ºC 8 - 600 kPa te Cartridge Cata					B	
Frese no. (PN16)	Frese no. (PN25)	Dimensions	L [mm]	D [mm]	D1 [mm]	H [mm]	Net Weight [kg]	Cart./Valve (Pcs.)
-	49-9073	DN50	170	100	80	218	3.41	1
-	49-9083	DN65	170	119	80	237	4.91	1
-	49-9093	DN80	170	131	80	249	4.79	1
49-9103	49-9540	DN100	170	163	100	281	6.90	2
49-9163	49-9541	DN125	170	193	125	311	9.00	3
49-9113	49-9542	DN150	170	216	150	334	11.73	4
49-9123	49-9543	DN200	170	271	200	389	18.75	7
49-9133	49-9544	DN250	170	326	260	440	23.44	12
49-9143	49-9545	DN300	170	383	315	501	33.41	15
49-9153	49-9546	DN350	170	443	355	561	44.21	19
49-9173	49-9547	DN400	170	496	405	614	51.63	26
49-9183	49-9548	DN450	170	545	455	663	57.47	33
49-9193	49-9549	DN500	170	601	508	719	67.75	40
49-9203	49-9550	DN600	170	715	610	833	88.90	56
49-9213	-	DN800	170	880	760	998	127.30	85

Blind Caps can be fitted instead of cartridges if the full flow capacity is not required. Frese A/S can deliver the valve with the cartridges installed (Frese number i.e. 49-9073-01 instead of 49-9073). Valves are delivered with 4" P/T-Plugs. From DN100 the valves are delivered with an eye bolt.

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets.

Specification text

The valve shall operate by means of automatic balancing stainless steel cartridges with replaceable orifice plate and internal EPDM diaphragm. The pressure class of the valve shall be PN16/PN25. The valve housing shall be made of ductile iron type GGG40. The valve shall comply with flanges according to EN/ANSI standards.

Frese S - Dynamic Balancing Valve

Application

Frese S is used in heating and cooling systems for the distribution of flow in various sections of the system.

Technote

The dynamic balancing valve ensures easy and reliable balancing of the system, regardless of any fluctations in the differential pressure of the system.

Frese S limits maximum flow in the system, and ensures the most economical operation.

Can be used in both variable and constant flow systems.

Benefits

- Quick and easy selection as only flow data are required.
- Security that the specified flow will not be exceeded.
- Easy to install and adjust according to pre-defined flow.
- Flexibility if the system is modified after the initial installation
- Minimized commissioning time due to automatic balancing of the system.
- High comfort for the end-users due to right balance of the hydraulic system.
- The valves automatically find the hydraulic balance regardless of pressure fluctations in the system.
- No main circuit or branch balancing valves needed in the system.
- Systems with dynamic balancing are flexible, as they do not require readjustment of the "original" circuit in case the system is extended after installation.

Features

- Removable differential pressure cartridge solution simplifies flushing procedure
- No minimum straight pipe lengths required before or after the valve.
- Built-in optional P/T ports for needle system.
- Easy adjustment of the flow by the lockable handle.

Р- Д

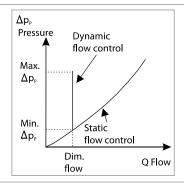
Diff. pressure unit

Technote

Frese S - Dynamic Balancing Valve

Function Frese S

The following applies to all flow control valves:


$$Q = kV * \sqrt{\Delta p}$$

 $\begin{array}{l} Q = \text{Flow (m^3/h)} \\ kV = \text{Opening area} \\ \Delta p = \text{Differential pressure (Bar)} \end{array}$

The Frese S valves, react to pressure fluctations so that the differential pressure across the preadjustment unit is kept constant. In that way a max. flow limit is ensured in accordance with the design.

Flow characteristic

The illustration shows how the flow in a Frese S valve reacts in accordance to the pump pressure.

The differential pressure unit of the valve will work as soon as the differential pressure provided by the pump is sufficient. Consequently, the rated flow is maintained regardless of any pressure fluctuations in the system.

For comparison we have added a typical flow.

Setting the valve

The valve is easily set, and the pre-setting is read on the scale. The flow rate of the valve can be determined from the flow rate graphs for the valve dimension in question.

See the flow rate graphs of the valve on pages 7 to 13 for further information about the adjustment setting.

Please note:

The scale is for the adjustment of flow. If you want to close the valve, use the version with isolation ball valve.

The handle can be locked after adjustment.

Remove cap marked Frese, and tighten with 5mm hexagonal key.

The flow through the valve can be identified by measuring the differential pressure (Δp) across the valve:

If the measured differential pressure is above the minimum Δp , the flow is the one stated on the graph for the valve.

If the measured differential pressure is below the minimum Δp , the flow can be found by using the formulas below.

Flow Calculation

$\mathbf{Q} = \mathbf{k}\mathbf{V}\cdot\sqrt{\Delta}\mathbf{p}$	Q = m3/h $\Delta p = Bar$
$Q = kV \cdot 100 \cdot \sqrt{\Delta p}$	Q = I/h $\Delta p = kPa$
$Q = \frac{kV}{36} \cdot \sqrt{\Delta p}$	$\begin{array}{l} Q=l/s\\ \Delta p=kPa \end{array}$

Simplified outline S

Р+ Д

unit

Pre-adjustment

Frese S valve

Flow

Frese S - Dynamic Balancing Valve

Verification of dynamic systems

Technote

In general the flow rate in a system can be verified in two ways, i.e.:

- Direct flow rate verification in a circuit
- Measurement of the differential pressure across the balancing valve or metering station.

Direct flow rate verification

Can for example be carried out by ultrasonic equipment. On the basis of the measured velocity of the flow and the pipe dimension the software will compute a flow rate. The use of ultrasonic verification requires free access to the pipes as the sensors are fitted directly to the pipe.

Measurement of the differential pressure is the prevailing method.

On dynamic valves the differential pressure across the valve is measured to determine whether the valve is within the pressure range or not.

Use the flow graphs to set the valve and verify the min. ΔP .

As previously mentioned, the Frese valve includes a differential pressure regulator, to keep the design flow limited under different pressure conditions. The flow rate itself, however, is only determined by the pre-setting in the same way as in any static valve.

Use the procedure as described for verification of the flow, and for optimization of the operation.

Once the differential pressure has been verified, the flow rate is given according to the flow rate graphs in this tech note. You may copy the form on page 11 and use it as documentation when verifying the different flow rates in the installation.

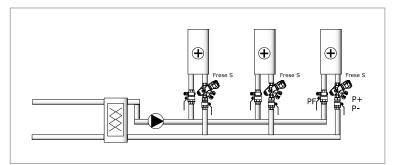
Measurement of the differential pressure across the valve	PP+

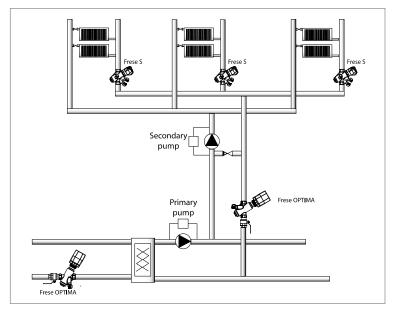
Frese S - Dynamic Balancing Valve

Application sketches

Frese S system in circuit with heating surfaces

Technote


The system is easily balanced by adjusting the pump according to the required differential pressure across the critical valve (P+ - P-).

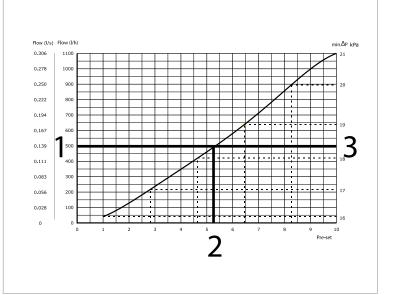

When the differential pressure is available the system will automatically be balanced.

Frese S in installation with mixing loops

Please note:

The balance is controlled by the Frese S valves fitted in each control zone. Major branch balancing valves are eliminated, even if the system may be larger and with far more branches than shown in this simplified diagram.

Flow rate example Frese S, DN15


Rated flow 500 l/h - 0,0139 l/s

 ${f l}$. The rated flow is used as the point of reference for the overall rating of dynamic systems. (See the graph)

Z. The pre-setting for the valve is found by means of the flow rate graph. Setting = 5.2.

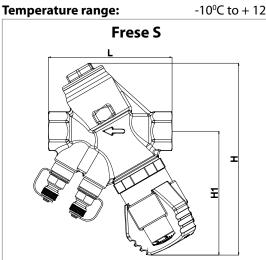
3. To the right in the graph you will see the minimum differential pressure required from the pump by each valve.

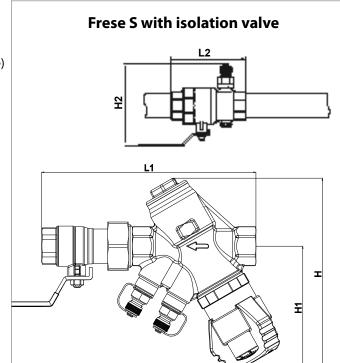
Requires 18,3 kPa.

4

Frese S - Dynamic Balancing Valve

Technical data


Technote


Housing:
DP controller:
Flow setting:
Spring:
Diaghragm:
O-rings:
Pressure class:

PPS 40% glass PPO Stainless steel HNBR EPDM PN25 (without isolation valve) PN16 (with isolation valve) 400 kPa (High pressure) 250 kPa (Low pressure) -10°C to + 120°C

DZR, Brass

Max. differential pressure:

Dimension		DN15	DN20	DN25	DN32	DN40	DN50
Flow rate	ΗP	0.011 - 0.306	0.018 - 0.512	0.025 - 0.653	0.060 - 1.328	0.049 - 2.067	0.122 - 2.868
l/s	LP	0.007 - 0.223	0.011 - 0.351	0.017 - 0.462			
1/1-	HP	40 - 1100	66 - 1850	89 - 2350	217 - 4800	175 - 7450	440 - 10350
l/h	LP	25 - 804	41 - 1265	61 - 1663			
	HP	0.18 - 4.85	0.29 - 8.11	0.39 - 10.35	0.96 - 21.04	0.77 - 32.76	1.94 - 45.46
gpr	n LP	0.11 - 3.54	0.18 - 5.57	0.27 - 7.32			
Dimension mm	L	96	97	103	132	144	155
	L1	167	173	202	235	257	286
	Н	148	151	155	188	206	219
	H1	96	98	102	115	119	126
	L2	75	82	95	100	108	127
	H2	95	103	111	135	145	164
	KVs	HP 2.4/LP 2.2	HP 3.6/LP 3.3	HP 4.4/LP 4.1	8.8	13.2	16.7

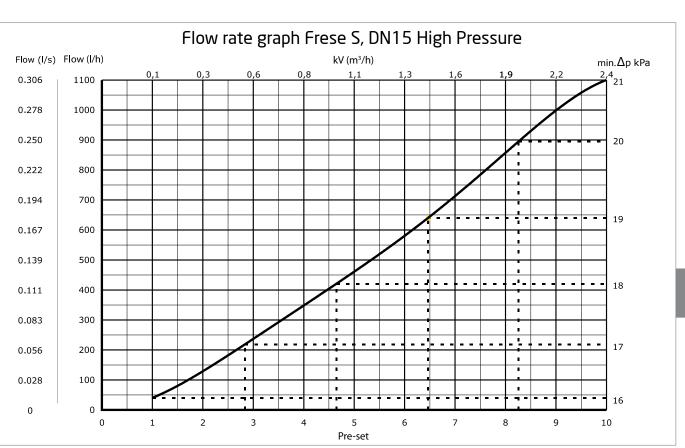
Text for technical Specifications

The valve should be a automatic balancing valve with the option of setting the flow without interference of operation.

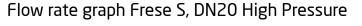
The valve should include P/T plugs for the verification of differential pressure. The valve should only be adjustable by means of a lockable handle.

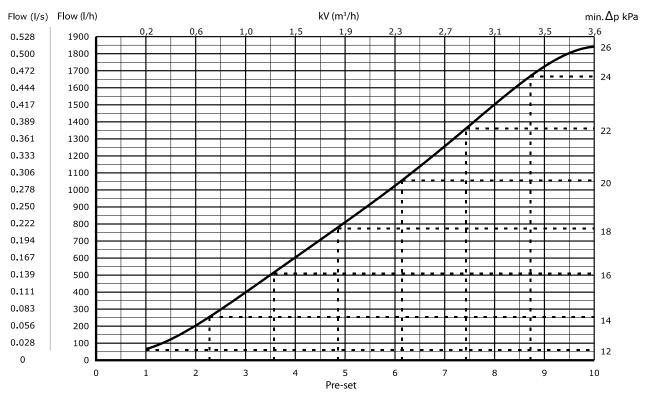
Technote

Frese S
- Dynamic Balancing Valve


Frese S without Isolation Valve							
		DN15	DN20	DN25	DN32	DN40	DN50
PT Plugs		(HP) 53-2000	(HP) 53-2001	(HP) 53-2002	(HP) 53-2003	(HP) 53-2004	(HP) 53-2005
		(LP) 53-2006	(LP) 53-2007	(LP) 53-2008			
Plugs		(HP) 53-2010	(HP) 53-2011	(HP) 53-2012	(HP) 53-2013	(HP) 53-2014	(HP) 53-2015
2″ PT plugs combi		(HP) 53-2020	(HP) 53-2021	(HP) 53-2022	(HP) 53-2023	(HP) 53-2024	(HP) 53-2025
Plug + drain valve		(HP) 53-2030	(HP) 53-2031	(HP) 53-2032	(HP) 53-2033	(HP) 53-2034	(HP) 53-2035
		(LP) 53-2036	(LP) 53-2037	(LP) 53-2038	(11) 55 2055	(111) 55 2054	(111) 55 2055
2″ PT plugs		(HP) 53-2040	(HP) 53-2041	(HP) 53-2042	(HP) 53-2043	(HP) 53-2044	(HP) 53-2045

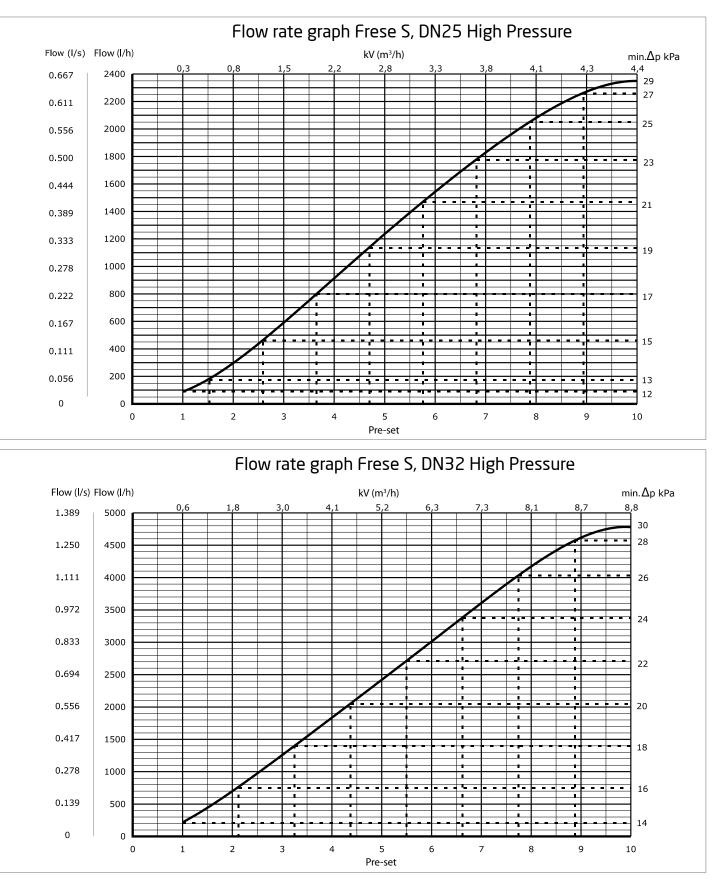
Frese S with Isolation Valve							
		DN15	DN20	DN25	DN32	DN40	DN50
PT Plugs		(HP) 53-2050 (LP) 53-2056	(HP) 53-2051 (LP) 53-2057	(HP) 53-2052 (LP) 53-2058	(HP) 53-2053	(HP) 53-2054	(HP) 53-2055
		(LF) 55-2050	(LF) 55-2057	(LF) 55-2058			
Plugs		(HP) 53-2060	(HP) 53-2061	(HP) 53-2062	(HP) 53-2063	(HP) 53-2064	(HP) 53-2065
2" PT plugs combi		(HP) 53-2070	(HP) 53-2071	(HP) 53-2072	(HP) 53-2073	(HP) 53-2074	(HP) 53-2075
Plug + drain valve		(HP) 53-2080	(HP) 53-2081	(HP) 53-2082	(HP) 53-2083	(HP) 53-2084	(HP) 53-2085
		(LP) 53-2086	(LP) 53-2087	(LP) 53-2088			
2" PT plugs		(HP) 53-2090	(HP) 53-2091	(HP) 53-2092	(HP) 53-2093	(HP) 53-2094	(HP) 53-2095


Frese S System								
		DN15	DN20	DN25	DN32	DN40	DN50	
PT plugs		(HP) 53-2120	(HP) 53-2121	(HP) 53-2122	(HP) 53-2123	(HP) 53-2124	(HP) 53-2125	
		(LP) 53-2126	(LP) 53-2127	(LP) 53-2128				
Plug + 2 drain valves		(HP) 53-2130	(HP) 53-2131	(HP) 53-2132	(HP) 53-2133	(HP) 53-2134	(HP) 53-2135	
		(LP) 53-2136	(LP) 53-2137	(LP) 53-2138	(ITF) 33-2133	(ITF) 55-2154	(117) 33-2133	


4

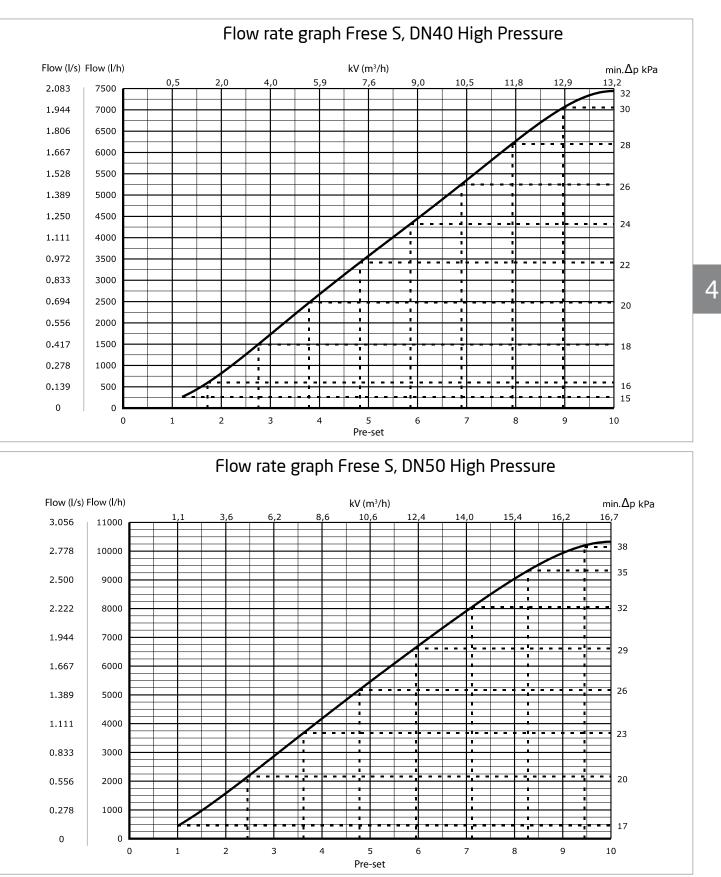
Technote

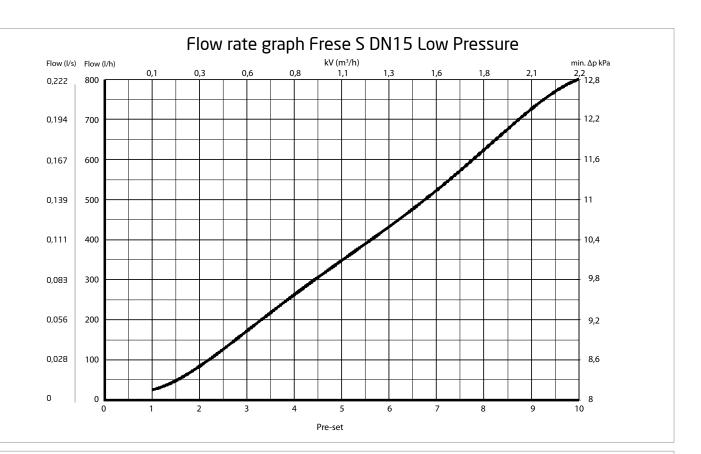
Frese S - Dynamic Balancing Valve

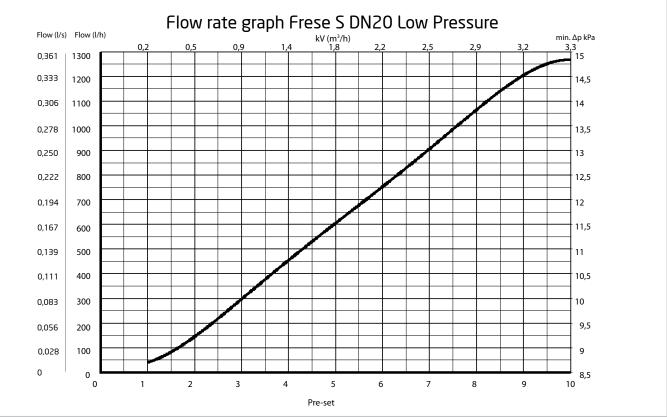


UK Frese S APR. '09

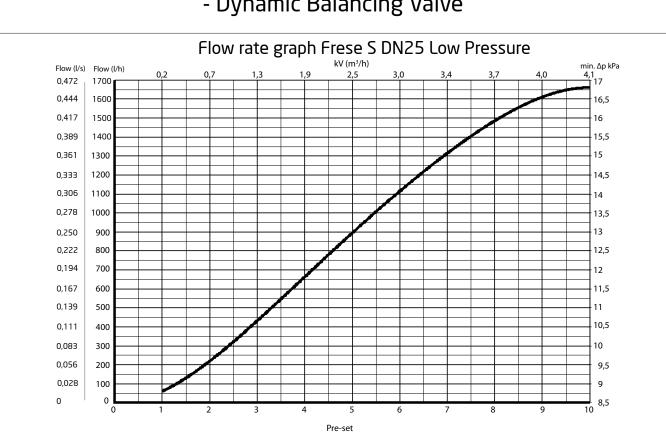
Technote







Technote



4

Technote

Frese S - Dynamic Balancing Valve

	Frese S DN15 LP			Fre	se S DN2	Frese S DN20 LP			Frese S DN25 LP		
	Flow				Flow			Flow			
Pre-setting	l/h	l/s	gpm	l/h	l/s	gpm	l/h	l/s	gpm		
1,00	25	0,007	0,11	41	0,011	0,18	61	0,017	0,27		
1,50	48	0,013	0,21	82	0,023	0,36	131	0,036	0,58		
2,00	84	0,023	0,37	145	0,040	0,64	220	0,061	0,97		
2,50	127	0,035	0,56	218	0,061	0,96	322	0,089	1,42		
3,00	172	0,048	0,76	297	0,083	1,31	432	0,120	1,90		
3,50	218	0,061	0,96	377	0,105	1,66	547	0,152	2,41		
4,00	263	0,073	1,16	455	0,126	2,00	664	0,184	2,92		
4,50	306	0,085	1,35	531	0,147	2,34	780	0,217	3,43		
5,00	348	0,097	1,53	605	0,168	2,66	895	0,249	3,94		
5,50	390	0,108	1,72	678	0,188	2,99	1007	0,280	4,43		
6,00	433	0,120	1,90	752	0,209	3,31	1114	0,310	4,91		
6,50	477	0,132	2,10	828	0,230	3,65	1218	0,338	5,36		
7,00	524	0,145	2,31	906	0,252	3,99	1315	0,365	5,79		
7,50	573	0,159	2,52	985	0,274	4,34	1405	0,390	6,19		
8,00	625	0,174	2,75	1064	0,296	4,68	1486	0,413	6,54		
8,50	678	0,188	2,98	1139	0,316	5,01	1557	0,432	6,85		
9,00	728	0,202	3,20	1204	0,334	5,30	1612	0,448	7,10		
9,50	772	0,214	3,40	1249	0,347	5,50	1650	0,458	7,26		
10,00	804	0,223	3,54	1265	0,351	5,57	1663	0,462	7,32		

gpm 0,39 0,78 1,31 1,93 2,60 3,31 4,02 4,74 5,44 6,13 6,79 7,43 8,05 8,63 9,16 9,63 10,00 10,26 10,35

Frese S	
- Dynamic Balancing	Valve

Setting and Flow

Fre		se S DN1	5 HP	Frese S DN20 HP			Frese S DN25 HP		
		Flow			Flow			Flow	
Pre-setting	l/h	l/s	gpm	l/h	l/s	gpm	l/h	l/s	gpm
1,00	40	0,011	0,18	66	0,018	0,29	89	0,025	0,39
1,50	80	0,022	0,35	123	0,034	0,54	177	0,049	0,78
2,00	129	0,036	0,57	204	0,057	0,90	297	0,082	1,31
2,50	182	0,051	0,80	298	0,083	1,31	438	0,122	1,93
3,00	237	0,066	1,04	398	0,111	1,75	591	0,164	2,60
3,50	293	0,081	1,29	501	0,139	2,21	751	0,209	3,31
4,00	348	0,097	1,53	604	0,168	2,66	914	0,254	4,02
4,50	404	0,112	1,78	707	0,196	3,11	1076	0,299	4,74
5,00	461	0,128	2,03	810	0,225	3,57	1236	0,343	5,44
5,50	519	0,144	2,29	916	0,254	4,03	1391	0,387	6,13
6,00	581	0,161	2,56	1025	0,285	4,51	1543	0,429	6,79
6,50	645	0,179	2,84	1138	0,316	5,01	1689	0,469	7,43
7,00	713	0,198	3,14	1257	0,349	5,53	1828	0,508	8,05
7,50	784	0,218	3,45	1379	0,383	6,07	1960	0,544	8,63
8,00	858	0,238	3,78	1502	0,417	6,61	2081	0,578	9,16
8,50	931	0,258	4,10	1620	0,450	7,13	2187	0,607	9,63
9,00	999	0,278	4,40	1725	0,479	7,59	2273	0,631	10,00
9,50	1059	0,294	4,66	1804	0,501	7,94	2331	0,647	10,26
10,00	1100	0,306	4,85	1850	0,512	8,11	2350	0,653	10,35

Frese S DN32 HP

		Flow	
Pre-setting	l/h	l/s	gpm
1,00	217	0,060	0,96
1,50	443	0,123	1,95
2,00	699	0,194	3,08
2,50	973	0,270	4,28
3,00	1257	0,349	5,53
3,50	1545	0,429	6,80
4,00	1836	0,510	8,08
4,50	2127	0,591	9,36
5,00	2420	0,672	10,65
5,50	2714	0,754	11,95
6,00	3012	0,837	13,26
6,50	3310	0,919	14,57
7,00	3607	1,002	15,88
7,50	3897	1,083	17,16
8,00	4172	1,159	18,36
8,50	4418	1,227	19,45
9,00	4618	1,283	20,33
9,50	4749	1,319	20,90
10,00	4800	1,328	21,04

Frese S DN40 HP

Flow						
l/h	l/s	gpm				
175	0,049	0,77				
439	0,122	1,93				
818	0,227	3,60				
1260	0,350	5,55				
1730	0,480	7,61				
2204	0,612	9,70				
2672	0,742	11,76				
3127	0,868	13,76				
3571	0,992	15,72				
4009	1,114	17,65				
4449	1,236	19,58				
4895	1,360	21,55				
5350	1,486	23,55				
5811	1,614	25,58				
6267	1,741	27,59				
6698	1,861	29,49				
7072	1,964	31,13				
7341	2,039	32,32				
7450	2,067	32,76				

Frese S DN50 HP

Flow						
l/h	l/s	gpm				
440	0,122	1,94				
976	0,271	4,29				
1576	0,438	6,94				
2214	0,615	9,75				
2868	0,797	12,62				
3525	0,979	15,52				
4179	1,161	18,40				
4824	1,340	21,24				
5461	1,517	24,04				
6089	1,691	26,80				
6709	1,864	29,54				
7321	2,034	32,23				
7919	2,200	34,86				
8497	2,360	37,41				
9041	2,511	39,80				
9530	2,647	41,95				
9934	2,760	43,73				
10216	2,838	44,97				
10350	2,868	45,46				

4

Frese S - Dynamic Balancing Valve

Documentation formular

Valve ID (own choise)	Valve type	Dimension	Pre-setting	Verified ∆p [kPa]	Min. Δp (see flow rate graph) [kPa]	Flow

Pump type	Regulation mode	Set point

Installation

Signature

Date

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Frese OPTIMA - Pressure independent control & balancing valve

Application

Frese OPTIMA pressure independent control valve (PICV) is used in heating and cooling systems in applications with Fan Coil Units, Air Handling Units or other terminal unit applications.

Frese OPTIMA provides modulating control with full authority regardless of any fluctuations in the differential pressure of the system.

Frese OPTIMA combines an externally adjustable automatic balancing valve, a differential pressure control valve and a full authority modulating control valve.

Frese OPTIMA makes it simple to achieve 100% control of the water flow in the building, while creating high comfort and energy savings at the same time. An additional benefit is that no balancing is required if further stages are added to the system, or if the dimensioned capacity is changed.

Energy saving due to optimal control, lower flow and pump pressure. Maximized ΔT due to faster response and increased system stability.

Benefits

Design

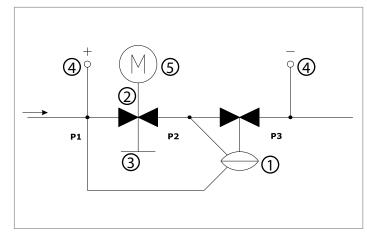
- Less time to define the necessary equipment for a hydraulic balanced system (only flow data are required)
- No need to calculate valve authority
- Flexibility if the system is modified after the initial installation

Installation

- No further regulating valves required in the distribution pipework when Frese OPTIMA is installed at terminals.
- Total number of valves minimized due to the 3-in-1 design
- Minimized commissioning time due to automatic balancing of the system
- Removable cartridge solution simplifies flushing procedure
- No minimum straight pipe lengths required before or after the valve.

Operation

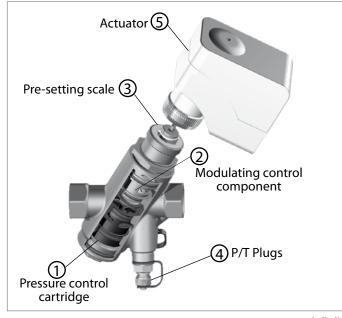
- High comfort for the end-users due to high precision temperature control
- Longer life due to less movements of the actuator

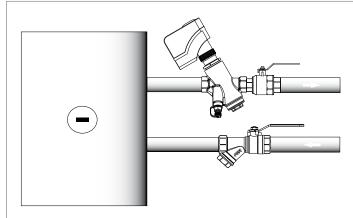


Features

- The presetting function has no impact on the stroke; Full stroke modulation at all times, regardless the preset flow.
- The constant differential pressure across the modulating control component guarantees 100% authority.
- Automatic balancing eliminates overflows, regardless of fluctuating pressure conditions in the system.
- Flushing through the valve is possible due to the removable cartridge feature
- Electrical actuator 0-10 V and 3 point control, normally closed
- Differential pressure operating range up to 400 kPa
- High flows with minimal required differential pressure due to advanced design of the valve
- More accurate control due to long 5.5 mm stroke
- Higher presetting precision due to stepless analogue scale

Frese OPTIMA - Pressure independent control & balancing valve


Technote


Design

The design of Frese OPTIMA combines high performance with small size and compact construction. The main components of the valve are:

- (1) The pressure control cartridge
- (2) The modulating control component
- 3 The presetting scale (not accessible when the actuator is mounted)
- (4) The P/T plugs (optional)
- (5) The electrical actuator

Function

The Frese OPTIMA is delivered with a commissioning cap allowing the flow to pass through the valve before the actuator is installed. The commissioning cap and cartridge features allow flushing through the valve before commissioning the system.

During flushing the the valve must be held in fully open position by the comissioning cap.

After flushing, the pressure control cartridge can be reinserted into the valve and the commissioning cap can be discarded allowing the user to adjust the presetting dial to the design flow. The presetting of the dial is user-friendly requiring only a simple flow vs. presetting graph. Once the flow is set, the actuator can be mounted and the valve ready to operate.

Manual operation

DN15-DN32

The actuator can then be operated manually with the help of a 3mm hex key.

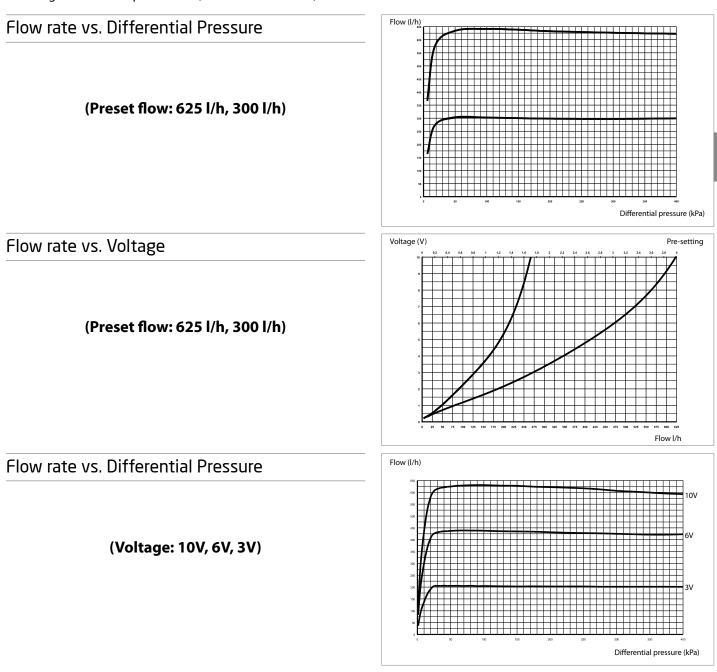
DN40-DN50

The actuator can be operated manually by adjusting handle

Note

If the operation is performed manually without disconnecting from the power, the supply must be disconnected and then reconnected, whereby the actuator will start the calibration process and correctly adjust itself.

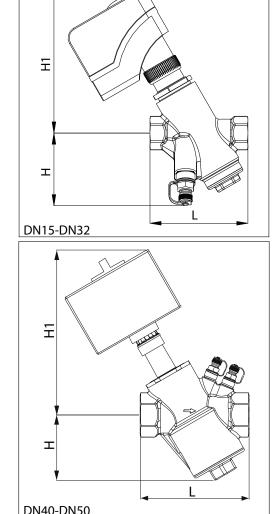
5


Technote

Frese OPTIMA - Pressure independent control & balancing valve

Operation principle

The innovative design of Frese OPTIMA introduces a modulating control component that retains 100% authority at all times. With the Frese OPTIMA, there are two independent movements for the presetting and the modulating function. During presetting, the inlet area moves radially without interfering with the length of the stroke. During modulating, the inlet area moves axial taking advantage of the full stroke. In the example below, the flow is modulated throughout the full range from 10 to 0V regardless of the preset flow (i.e. 625 l/h or 300 l/h).


Whilst the control component provides proportional modulation irrespective of the preset flow, the automatic balancing cartridge guarantees that the flow will never exceed the maximum preset flow. Regardless of pressure fluctuations in the system, the maximum flow is kept constant up to a maximum differential pressure of 400kPa.

Frese OPTIMA - Pressure independent control & balancing valve

Technical data Valve Valve housing and flow setting: DZR Brass, CW602N **DP controller:** PPS 40% glass Spring: Stainless steel **Diaphragm:** HNBR **O-rings:** EPDM **Pressure class:** PN25 Max. differential pressure: 400 kPa Medium temperature range: 0°C to 120°C

The pipe system shall be properly ventilated to avoid risk of air pockets. Glycolic mixtures up to 50% are applicable (both ethylene and propylene).

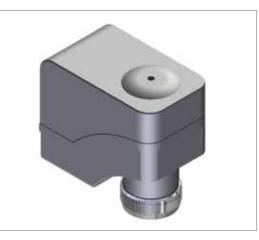
ene and propylene). Frese A/S can accept no responsibility if another actuator is used instead of the Frese actuator

Technical data

		DIN40-DIN30						
		DN15	DN20	DN25	DN32	DN40	DN50	
l/s	LF	0.022 - 0.174	0.036 - 0.292	0.064 - 0.478	0 1 20 0 940	0 562 1 074	0.612 - 2.385	
	HF	0.068 - 0.479	0.081 - 0.566	0.081 - 0.566	0.129 - 0.849	0.302 - 1.974	0.012 - 2.365	
l/h	LF	78 - 625	131 - 1050	231 - 1722	465 2056	2022 7105	2204 0506	
	HF	244 - 1724	292 - 2039	292 - 2039	403 - 3030	2022 - 7103	2204 - 8586	
gpm	LF	0.34 - 2.76	0.58 - 4.63	1.02 - 7.59	2.05 - 13.47	8,90 - 31.28	9,70 - 37.80	
	HF	1,08 - 7.60	1.29 - 8.99	1.29 - 8.99				
m³/h	LF	1.6	2.6	4.3	7.2	12.0	15.0	
	HF	4.1	4.3	4.3	7.2	13.9	15,2	
L		88	88	92	128	144	155	
Н		65	65	66	72	87	93	
H1		145	145	145	152	219	225	
kg		0.90	0.91	1,00	1.52	2.55	3.20	
	l/h gpm m³/h L H H1	$ /h = \frac{HF}{LF}$ $gpm = \frac{HF}{LF}$ $m^{3}/h = LF$ $L = HF$ $H1 = L$	I/s LF $0.022 - 0.174$ HF $0.068 - 0.479$ LF $78 - 625$ HF $244 - 1724$ gpm LF $0.34 - 2.76$ HF $1,08 - 7.60$ m ³ /h LF 1.6 LF 4.1 L 4.1 L 65 H1 145	I/sLF0.022 - 0.1740.036 - 0.292HF0.068 - 0.4790.081 - 0.566I/hLF78 - 625131 - 1050gpmHF244 - 1724292 - 2039BF0.34 - 2.760.58 - 4.63HF1,08 - 7.601.29 - 8.99m³/hLF1.62.6HF4.14.3L88888H6565H1145145	I/sLF $0.022 - 0.174$ $0.036 - 0.292$ $0.064 - 0.478$ HF $0.068 - 0.479$ $0.081 - 0.566$ $0.081 - 0.566$ I/hLF $78 - 625$ $131 - 1050$ $231 - 1722$ gpmHF $244 - 1724$ $292 - 2039$ $292 - 2039$ gpmLF $0.34 - 2.76$ $0.58 - 4.63$ $1.02 - 7.59$ HF $1,08 - 7.60$ $1.29 - 8.99$ $1.29 - 8.99$ m ³ /hLF 1.6 2.6 4.3 L $+4.1$ 4.3 4.3 L -888 88 92 H -655 655 666 H1 -145 145 145	$ \begin{array}{c c c c c c c } & \begin{tabular}{ c c c c } $Interpretation $Interpretat$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Technote

Frese OPTIMA - Pressure independent control & balancing valve

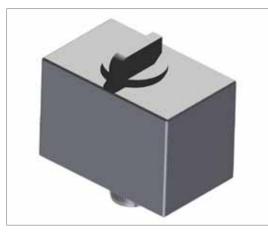

Technical data

Actuator DN15-DN32

Characteristics:	Electrical, modulating, normally closed
Protection class:	IP 40 to EN 60529
Frequency:	50/60 Hz
Control signal:	0-10V DC, or 3 position
Actuating force:	250 N
Stroke:	5.5 mm
Running time:	150 s 3 position/75s 0-10V
Ambient operating conditions:	+1°C to 50°C
Manual operation:	3 mm hexagonal key
Cable length:	1,5 m
Weight:	350 g
Modulating actuator 24V AC-DC / 0-10 V	DC / 75s 53-1045

53-1046

53-1047

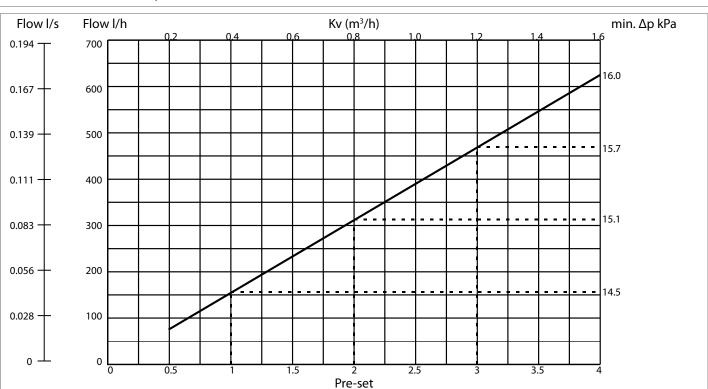


Actuator DN40-DN50w

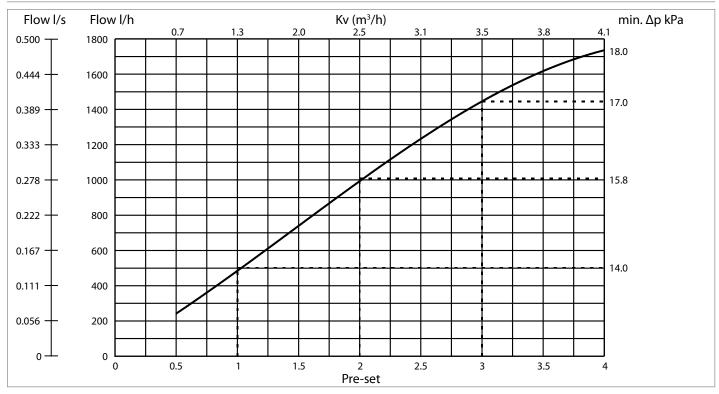
Modulating actuator 24 V AC / 3 pos / 150 s

Modulating actuator 230 V AC / 3 pos. / 150 s

Characteristics: Protection class: Frequency: Control signal: Actuating force: Stroke: Running time: Ambient operating conditions: Manual operation: Cable: Weight:	Electrical, modulating, normally closed IP 54 to EN 60529 50 Hz 0-10V DC, or 3 position 400 N 6.5 mm 170 s/43 s -5°C to 50°C Manual adjusting handle Not included 600 g
Modulating actuator 24 V AC / 0-10V DC /	/ 43s 53-1052
Modulating actuator 24 V AC / 3 pos / 43s	s 53-1053
Modulating actuator 230 V / 3 pos. / 170s	53-1054


Product program

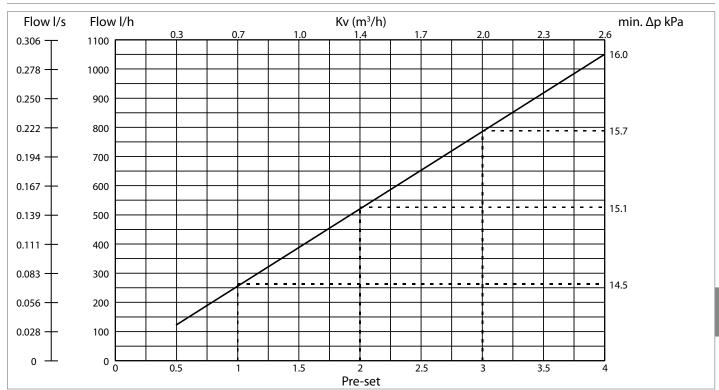
	Frese OPTIMA								
	DN15 DN20 DN25 DN32 DN40 DN50								
D/T Dlugs	P/T Plugs	(LF) 53-1090	(LF) 53-1091	(LF) 53-1092	53-1093	53-1097	53-1098		
P/T Plugs		(HF) 53-1094	(HF) 53-1095	(HF) 53-1096					
Dlugs	P.	(LF) 53-1080	(LF) 53-1081	(LF) 53-1082	E2 1092	E2 1097	E2 1099		
Plugs		(HF) 53-1084	(HF) 53-1085	(HF) 53-1086	53-1083	53-1087	53-1088		


Technote

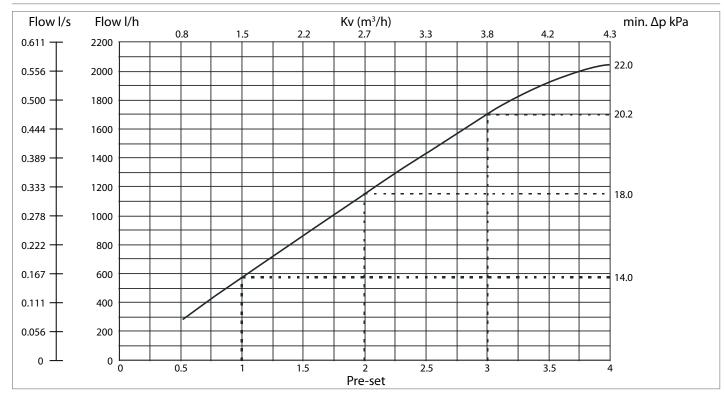
Frese OPTIMA - Pressure independent control & balancing valve

Frese OPTIMA DN15, Low Flow

Frese OPTIMA DN15, High Flow

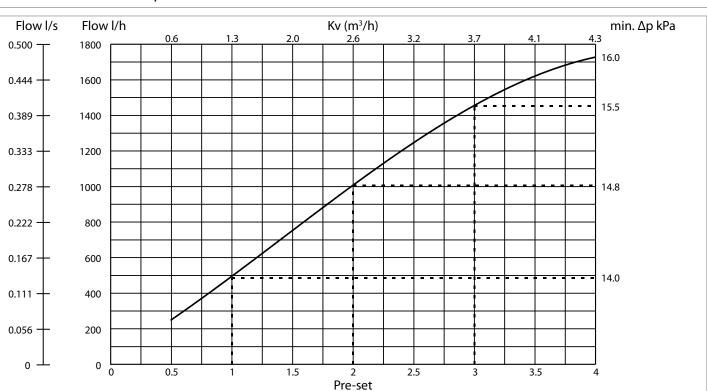


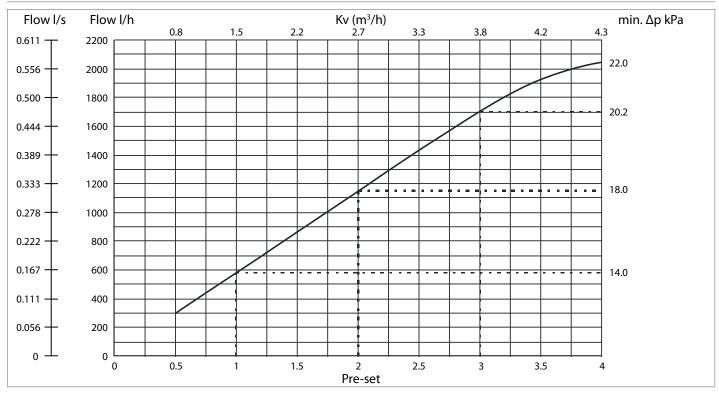
5


Technote

Frese OPTIMA - Pressure independent control & balancing valve

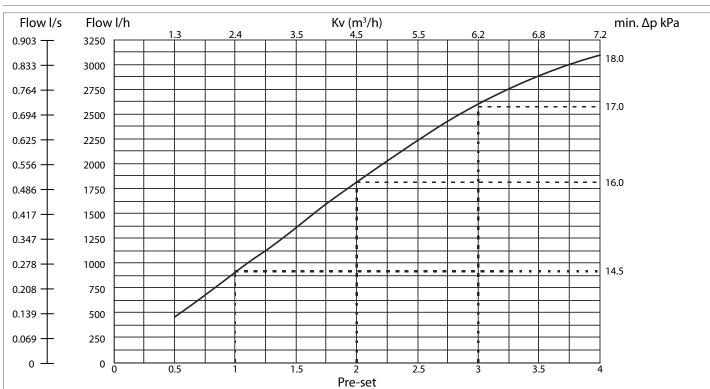
Frese OPTIMA DN20, Low Flow

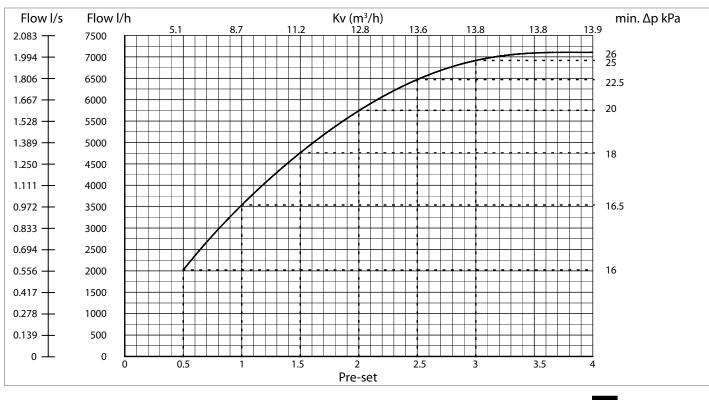

Frese OPTIMA DN20, High Flow


Technote

Frese OPTIMA - Pressure independent control & balancing valve

Frese OPTIMA DN25, Low Flow


Frese OPTIMA DN25, High Flow


Technote

Frese OPTIMA - Pressure independent control & balancing valve

Frese OPTIMA DN32

Frese OPTIMA DN40

_Technote

Frese OPTIMA - Pressure independent control & balancing valve

Flow (I/s) Flow (l/h) Kv (m³/h) min. Δp kPa 15,2 11,9 9.2 i3,4 14,4 15,0 15 1 2,500 9000 32 2,361 8500 30 8000 2,222 29 1,994 7500 1,806 7000 28 1,667 6500 6000 1,528 25 1,389 5500 5000 1,250 1,111 4500 22 4000 0,972 0,833 3500 0,694 3000 0,556 2500 19 0,556 2000 0,417 1500 1000 0,278 0,139 500 0 0 0.5 1,5 0 1 2 2,5 3 3,5 4 Pre-set

Frese OPTIMA DN50, High Flow

Specification text

The actuated valve shall operate by means of an automatic balancing cartridge that can be removed without dismantling the valve. The presetting of the valve shall not influence the length of the stroke. The pressure class shall be PN25. The differential pressure operating range shall be up to 400kPa. The valve shall operate by means of an electrical modulating actuator.

Setting and Flow

OPTIMA DN15 Low Flow			OPTIMA DN15 High Flow			OPTIMA DN20 Low Flow			
Pre-set	Flow I/h	Flow I/s	Flow gpm	Flow I/h	Flow I/s	Flow gpm	Flow I/h	Flow I/s	Flow gpm
0,50	78	0,022	0,34	244	0,068	1,08	131	0,036	0,58
0,75	117	0,033	0,52	372	0,103	1,64	197	0,055	0,87
1,00	156	0,043	0,69	501	0,139	2,20	263	0,073	1,16
1,25	195	0,054	0,86	630	0,175	2,77	328	0,091	1,44
1,50	234	0,065	1,03	759	0,211	3,34	394	0,109	1,73
1,75	274	0,076	1,20	886	0,246	3,90	459	0,128	2,02
2,00	313	0,087	1,38	1009	0,280	4,44	525	0,146	2,31
2,25	352	0,098	1,55	1128	0,313	4,97	591	0,164	2,60
2,50	391	0,109	1,72	1241	0,345	5,46	656	0,182	2,89
2,75	430	0,119	1,89	1347	0,374	5,93	722	0,201	3,18
3,00	469	0,130	2,06	1444	0,401	6,36	788	0,219	3,47
3,25	508	0,141	2,24	1532	0,426	6,74	853	0,237	3,76
3,50	547	0,152	2,41	1609	0,447	7,08	919	0,255	4,04
3,75	586	0,163	2,58	1673	0,465	7,37	984	0,273	4,33
4,00	625	0,174	2,75	1724	0,479	7,59	1050	0,292	4,62

Frese OPTIMA - Pressure independent control & balancing valve

Setting and Flow

	OPTIMA DN20 High Flow			ΟΡΤΙ	OPTIMA DN25 Low Flow			OPTIMA DN25 High Flow		
Pre-set	Flow I/h	Flow I/s	Flow gpm	Flow I/h	Flow I/s	Flow gpm	Flow l/h	Flow I/s	Flow gpm	
0,50	292	0,081	1,28	231	0,064	1,02	292	0,081	1,28	
0,75	435	0,121	1,91	357	0,099	1,57	435	0,121	1,91	
1,00	577	0,160	2,54	486	0,135	2,14	577	0,160	2,54	
1,25	719	0,200	3,17	617	0,171	2,72	719	0,200	3,17	
1,50	863	0,240	3,80	749	0,208	3,30	863	0,240	3,80	
1,75	1007	0,280	4,43	878	0,244	3,87	1007	0,280	4,43	
2,00	1152	0,320	5,07	1005	0,279	4,43	1152	0,320	5,07	
2,25	1296	0,360	5,70	1128	0,313	4,96	1296	0,360	5,70	
2,50	1437	0,399	6,33	1244	0,346	5,48	1437	0,399	6,33	
2,75	1573	0,437	6,92	1352	0,376	5,95	1573	0,437	6,92	
3,00	1700	0,472	7,48	1452	0,403	6,39	1700	0,472	7,48	
3,25	1815	0,504	7,99	1540	0,428	6,78	1815	0,504	7,99	
3,50	1913	0,531	8,42	1615	0,449	7,11	1913	0,531	8,42	
3,75	1990	0,553	8,76	1676	0,466	7,38	1990	0,553	8,76	
4,00	2039	0,566	8,98	1722	0,478	7,58	2039	0,566	8,98	

	OPTIMA DN32				OPTIMA DN40			OPTIMA DN50		
Pre-set	Flow I/h	Flow I/s	Flow gpm	Flow I/h	Flow I/s	Flow GPM	Flow l/h	Flow I/s	Flow GPM	
0,50	465	0,129	2,05	2022	0,562	8,90	2204	0,612	9,70	
0,75	692	0,192	3,05	2825	0,785	12,44	3325	0,924	14,64	
1,00	921	0,256	4,05	3538	0,983	15,58	4337	1,205	19,09	
1,25	1150	0,319	5,06	4179	1,161	18,40	5218	1,449	22,97	
1,50	1377	0,382	6,06	4758	1,322	20,95	5963	1,657	26,25	
1,75	1600	0,444	7,04	5279	1,466	23,24	6577	1,827	28,95	
2,00	1816	0,504	7,99	5741	1,595	25,27	7070	1,964	31,12	
2,25	2024	0,562	8,91	6139	1,705	27,03	7459	2,072	32,84	
2,50	2221	0,617	9,78	6470	1,797	28,48	7766	2,157	34,19	
2,75	2405	0,668	10,59	6729	1,869	29,62	8009	2,225	35,25	
3,00	2574	0,715	11,33	6916	1,921	30,44	8024	2,279	36,11	
3,25	2726	0,757	12,00	7033	1,954	30,96	8362	2,323	36,81	
3,50	2858	0,794	12,58	7090	1,969	31,21	8486	2,357	37,36	
3,75	2969	0,825	13,07	7105	1,974	31,28	8568	2,380	37,72	
4,00	3056	0,849	13,45	7105	1,974	31,28	8586	2,385	37,80	

Frese OPTIMA - Pressure independent control & balancing valve

Documentation formular

Valve ID (own choise)	Valve type	Dimension	Pre-setting	Verified ∆p [kPa]	Min. Δp (see flow rate graph) [kPa]	Flow
				-		

Pump type	Regulation mode	Set point

Installation

Signature

Date

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Actuator Frese OPTIMA

Application

Proportional or 3-position modulating control of Frese OPTIMA valves in heating, ventilating and air conditioning systems.

Features actuator DN15-DN32

- Nominal stroke range 2.0...5.5 mm.
- 3-position or 0..10 V DC control signal.
- The stroke is adapted automatically to the valve.
- Direct assembly with union nut to the neck of the valve no tools required.
- Manual operation by using a standard 3 mm hexagonal key.
- The actuator is short-circuit-proof and protected against polarity reversal.
- Plug-in cable for supply voltage and control signal.

Features actuator DN40-DN50

- Nominal stroke 6.5 mm.
- 3-position or 0..10 V DC control signal
- Direct assembly with union nut to the neck of the valve.
- Manual operation by using adjusting handle.

Approval

- Conformity to: EMC directive
- 89/336/EEC,93/68/EEC
- Low voltage directive 73/23/EEC

Technote

Actuator Frese OPTIMA

Technical data actuator DN15-DN32

Supply voltage: Frequency: Manual operation: Cable lenght: Protection class: Ambient conditions:	See "Types and Operation data 50/60 Hz 3 mm Hexagonal key 1,5m IP 40 acc. EN60529 +1°C50°C - Storage -5°C50°C
Weight: Nominal force: Input impedance: Nominal stroke:	- Humidity 585% r.F. 350 g >250N > 100 k Ohm (DC 010v) 5,5mm

Technical data actuator DN40-DN50

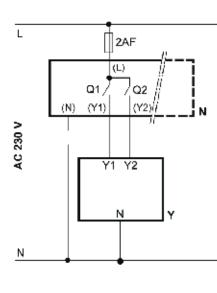
Supply voltage: Frequency: Manual operation: Cable lenght: Protection class: Ambient conditions:

Weight: Nominal force: Input impedance: Nominal stroke: See "Types and Operation data 50 Hz Adjusting handle No cable IP 54 acc. EN60529 -5°C...50°C - Storage -5°C...50°C - Humidity 5...95% r.F. 600 g >400N > 100 k Ohm (DC 0...10v) 6,5mm

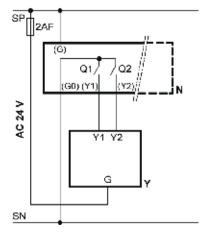
Types and Operation Data

Types	Valve Dim.	Function	Running time (50 Hz)	Supply voltage	Power Consumtion	Parallel opera- tion No. of actuator
53-1045	DN15-DN32	DC 010 V	75s	AC/DC 24 V +/- 25%	2,5 VA	Max. 10
53-1046	DN15-DN32	3 - position	150s/5.5mm	AC 24 V +/- 20%	0,8 VA	Max. 24
53-1047	DN15-DN32	3 - position	150s/5.5mm	AC 230 V +/- 15%	6 VA	Max. 6
53-1052	DN40-DN50	DC 010 V	43s/6,5mm	AC 24 V +/- 20%	4,5 VA	Max. 10
53-1053	DN40-DN50	3 - position	43s/6,5mm	AC 24 V +/- 20%	2,0 VA	-
53-1054	DN40-DN50	3 - position	170s/6,5mm	AC 230 V +/- 15%	2,5 VA	-

Ordering


When ordering, please give quantity, designation and type code. **Example** - 1pc, 3-position valve actuator, 24V-150, 53-1046.

Actuator Frese OPTIMA DN15-DN32


Connection cables white SSD31FRS Control signal CLOSE (AC 230 V) (53-1047) Control signal OPEN (AC 230 V) blue Neutral orang SSD81FRS Control signal CLOSE (AC 24 V) (53-1046) violet Control signal OPEN (AC 24 V) System potential AC 24 V grey SSD61FRS Control signal DC 0 ... 10 V blaci (53-1045) System neutral (- at DC 24 V) red System potential AC 24 V (+ at DC 24 V)

Connection diagrams

SSD31FRS (53-1047)

- N Controller
- Y Actuator
- SP, G System potential AC 24V

Controller

Actuator

Q1, Q2 Controller contacts

System neutral

System potential AC 230V

Control signal OPEN, CLOSE

Ν

Y

L

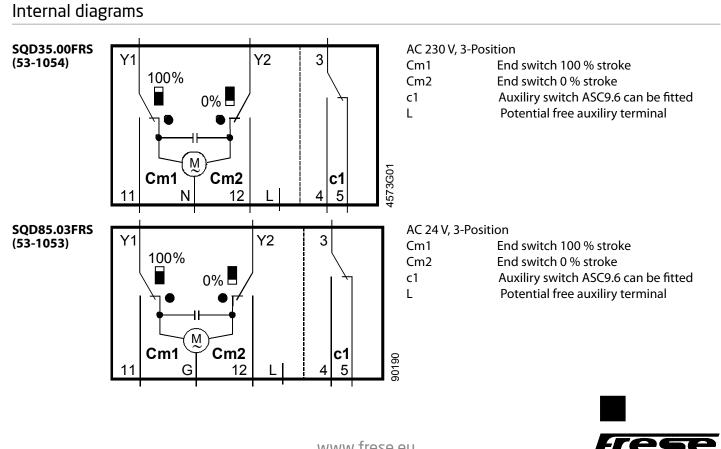
Ν

Y1, Y2

- SN, G0 System neutral
- Y1, Y2 Control signal OPEN, CLOSE
- Q1, Q2 Controller contacts

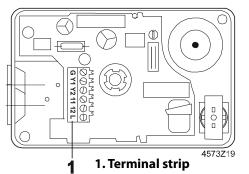
Actuator Frese OPTIMA DN15-DN32

Connection diagrams


Technote

- Controller Ν
- Y Actuator
- SP, G System potential AC/DC 24V
- SN, G0 System neutral
 - Control signal Υ

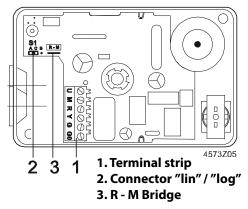
Actuator Frese OPTIMA DN40-DN50


Actuator Frese OPTIMA DN40-DN50

Function /mechanical design

Technote

The reversible synchronous motor is driven by a 3-position or a proportional DC 0...10 V, DC 2...10 V or 0...1000 Ω control signal. The stroke is generated via an antilocking gear train.


SQD35.00FRS (53-1054) & SQD85.03FRS (53-1053)

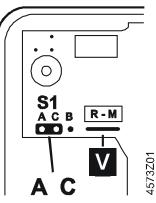
3-position control signal:

Voltage at Y1 Voltage at Y2 No voltage at Y1 or Y2 Stem extends, valve opens Stem retracts, valve closes Actuator hold the current position

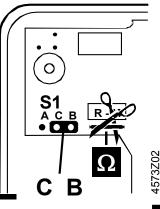
SQD65FRS (53-1052)

DC 0/2...10 V or 0...1000 Ω control signal:

The valve opens / closes in proportion to the control signal at Y or R.


At DC 0 V or 0 Ω the valve is closed (A --> AB). When power supply is removed, the actuator maintains its current position.

SQD65FRS (53-1052)


Selecting the flow characteristic-position control signal:

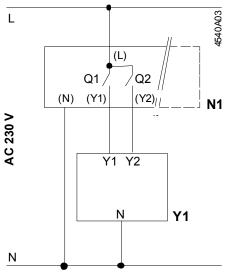
Position of S1

S1 connected to A and C: equal-percentage flow characteristic (factory setting)

S1 connected to B and C: linear flow characteristic

www.frese.eu

Connector S1 (under the cover, on the printed circuit board) can be repositioned to

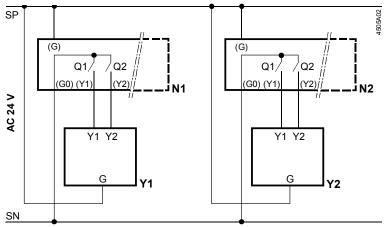

change the flow characteristic of valves from «equal percentage» to «linear»; in all

cases the flow characteristic relates to the through-port of the valve.

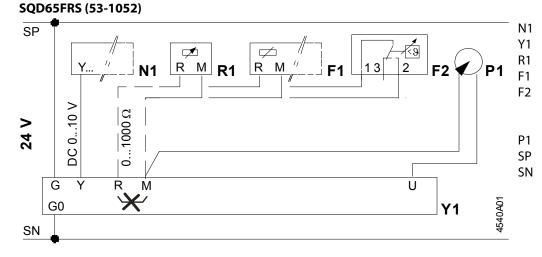
Actuator Frese OPTIMA DN40-DN50

Connection diagrams

SQD35.00FRS (53-1054)


N1	Controller
Y1	Actuator S

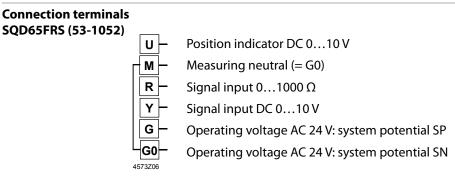
- Q1, Q2
- ctuator SQD35.00FRS
- L Ν


SN

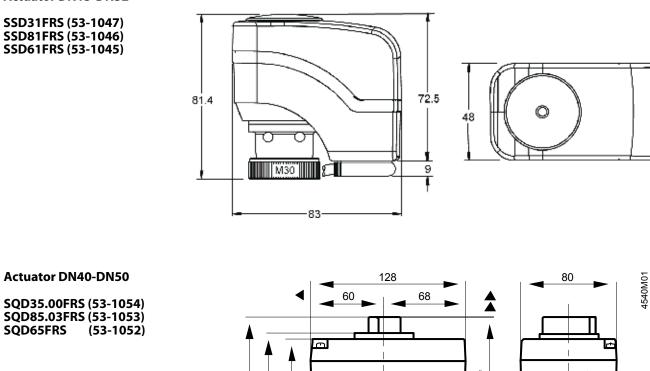
- Controller contacts
- System potential AC 230 V
- System neutral

SQD85.03FRS (53-1053)

- N1, N2 Controller
- Y1, Y2 Actuator SQD85.03FRS
- Q1, Q2 Controller contacts SP
 - System potential AC 24 V
 - System neutral



- Controller
- Actuator SQD65FRS Position indicator $0...1000 \Omega$ Frost protection $0...1000 \Omega$ Frost protection thermostat Terminals 1-3 Frost danger Terminals 1-2 Normal operation Position transmitter DC 0.....10V
- System potential AC 24 V System neutral

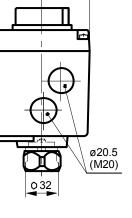

Actuator Frese OPTIMA

Connection diagrams

Dimensions

Actuator DN15-DN32

All dimensions in mm


Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

134

V

120 88

₿8

11

١

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk

40MINU4

5

M30x1,5

Application

Frese EVA is a valve particularly designed for the balancing of cooling and heating units.

Technote

With its simple on/off control the valve can be used for many different applications, and at the same time advantage is derived from the dynamic control principles.

By means of Frese EVA the optimum flow rate is ensured in each control area. This flow rate is maintained in spite of pressure fluctuations in the system. A control area may be two fan coils for a hotel room or a calorifier for a sports centre.

Energy savings due to automatic flow control, lower flow and pump pressure. Maximized ΔT due to faster response and increased system stability.

Benefits

- Time consuming adjustment of the system is eliminated
- The valve automatically ensures the hydraulic balance, regardless of changing pressure conditions in the system

Design

- No need to use balancing valves in the distribution lines, main distribution lines and supply lines
- Less time to define the necessary equipment for a hydraulic balanced system
- No impact if the calculated distribution of pressure in the installation is not accurate
- Security that the specified flow is also the real one
- No requirements on pipe lengths before and after the valve

Installation

- Minimized commissioning time due to automatic balancing of the system
- No need for oversized pumps and oversized control valves

Operation

- Energy savings due to elimination of overflows
- Higher comfort due to correct distribution of water in the system and to optimized function of the control valves

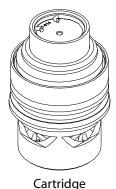
6

Frese EVA with P/T plugs and Frese EVA Basic with actuators

Features

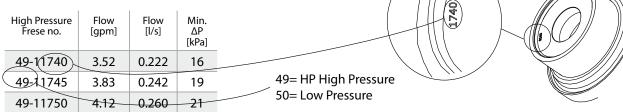
- Two valves in one. Replaces both the normal static valve (DRV) and two way valve
- No requirement on pipe lenghts before and after the valve
- Small compact product
- Built-in on/off function for electrically operated actuator (normally closed)
- The valve can easily be fitted into the system
- Integral optional P/T plugs on Frese EVA for needle system

Function


The balancing occurs by means of a flow rate cartridge that keeps the differential pressure constant across an orifice.

In the wanted control range the pump supplies sufficient differential pressure to affect the spring and diaphragm of the cartridge.

Frese EVA ensures the optimum flow in each control zone to maintain the rated heat/cool transfer. This flow is maintained regardless of pressure fluctuations in the system.


See cartridge catalogue for further details.

Technote

Indication of flow rate on the orifice plate

A four-digit number on the orifice plate is identical with the last four digits in the Frese number. The cartridge can be identified by means of this number and the corresponding flow rate can be read from the above flow rate tables.

Text for technical specifications

Housing:

The Valve housing shall be made of Hot stamped Brass in DR quality. The valve shall regulate flow by means of a replaceable cartridge.

Pressure rating of the valve housing shall be PN16 or PN25. The Kv Value of the valve housing inclusive the on/off control unit shall be no less than 3,0.

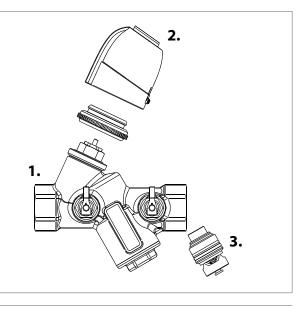
Control unit:

The Valve shall be NC (normally closed)

The valve shall be able to close completely against a DP of 4 Bar

Flow Regulator:

The flow regulating Cartridge shall be made of brass in DR quality.


The Cartridge shall offer the opportunity to change the flow by replacing an orifice plate without changing the entire cartridge.

The Cartridge shall operate in one pressure range only throughout the entire hydraulic system.

Product programme Frese EVA

Ploquet p	uug	Iannie	11626	ECVA			
1. Frese E	EVA						
48-5803		48-580	00	DN15		Kv 3,0	
48-5804		48-580	48-5801)	Kv 3,0	
48-5805		48-580		DN25		K	v 3,0
2. Actuate	or o	n/off, n	orma	lly close	ed		
		48-551	15	24 vol	t		
		48-551	18	230 vo	lt		
3. Cartrid	. Cartridge						
Frese no. 49 or 50-xxxx	Flov I/h		Flow gpm	Min. DP kPa	DP Ho kP		Min DP. total kPa
11150	25	0,007	0,11	7	0)	7
11170	36	0,010	0,16	7	0)	7
11190	43	0,012	0,19	7	0)	7
11210	55	0,015	0,24	7	0)	7
11230	75	0,021	0,33	8	0		8
11260	84	0,023	0,37	9	0)	9
11290	104	0,029	0,46	10	0)	10
11300	114	0,032	0,50	10	0)	10
11320	129	0,036	0,57	11	0)	11
11350	154	0,043	0,68	11	0)	11
11370	175	5 0,049	0,77	12	0)	12
11400	204	0,057	0,90	12	0)	12
11430	241	0,067	1,06	12	1		13
11460	279	0,078	1,23	12	1		13
11490	320	0,089	1,41	13	1		14
11510	350	0,097	1,54	13	1		14
11540	400	0,111	1,76	13	2		15
11570	477	0,133	2,10	14	3		17
11620	545	5 0,151	2,40	14	3		17
11725	615	5 0,171	2,71	14	4		18
11730	670	0,186	2,95	14	5		19
11735	736	5 0,204	3,24	14	6	i	20
11740	799	0,222	3,52	16	7	,	23
11745	870	0,242	3,83	19	8		27
11750	936	5 0,260	4,12	21	1(0	31
20700	102	0 0,283	4,49	22	12	2	34
20740	108	1 0,300	4,76	22	13	3	35
20770	119	5 0,332	5,26	22	16	5	38
20820	133	5 0,371	5,88	23	20	C	43
20860	148	3 0,412	6,53	23	24	4	47
20880	158	1 0,439	6,96	23	28	3	51
20920	1774	4 0,493	7,81	24	35	5	59
20940	183	3 0,509	8,07	24	37	7	61
20990	208	0 0,578	9,16	25	48	8	73
21030	225	1 0,625	9,91	26	56	5	82
21060	2319	9 0,644	10,21	27	60	า	87
21060	251.	9 0,044	10,21	27	00	5	0/

Accessories

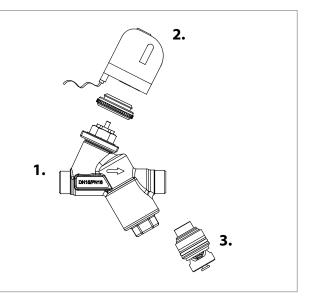
Extension pie	ece for actuator
h = 20 mm	48-5557
Strainer	
DN15	41-1132
DN20	41-1142
DN25	41-1152
Ball Valve	1
DN15	38-5020
DN20	38-5022
DN25	38-5024
Strainer Ball	Valve
DN15	38-5040
DN20	38-5041
DN25	38-5042
Spindle Exte	nsion
DN15/20	46-1072
DN25	46-1073
P/T-plugs	•
1/4″ x 60mm	48-0012
Combidrain 1/4" x 60mm	46-1073

6

6

(**D**)

(

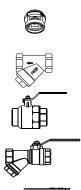


Product programme Frese EVA Basic

Technote

1. Frese EVA Basic

48-5803		48-580		DN15		Kv 3,0	
2. Actuat	or on	/off, n	orma	lly close	ed		
		48-551	15	24 vol	t		
3. Cartrid	ge	48-551	8	230 vo	lt		
Frese no. 49 or 50-xxxx	Flow I/h	Flow I/s	Flow gpm	Min. DP kPa	DP Housing kPa	Min DP. total kPa	
11150	25	0,007	0,11	7	0	7	
11170	36	0,010	0,16	7	0	7	
11190	43	0,012	0,19	7	0	7	
11210	55	0,015	0,24	7	0	7	
11230	75	0,021	0,33	8	0	8	
11260	84	0,023	0,37	9	0	9	
11290	104	0,029	0,46	10	0	10	
11300	114	0,032	0,50	10	0	10	
11320	129	0,036	0,57	11	0	11	
11350	154	0,043	0,68	11	0	11	
11370	175	0,049	0,77	12	0	12	
11400	204	0,057	0,90	12	0	12	
11430	241	0,067	1,06	12	1	13	
11460	279	0,078	1,23	12	1	13	
11490	320	0,089	1,41	13	1	14	
11510	350	0,097	1,54	13	1	14	
11540	400	0,111	1,76	13	2	15	
11570	477	0,133	2,10	14	3	17	
11620	545	0,151	2,40	14	3	17	
11725	615	0,171	2,71	14	4	18	
11730	670	0,186	2,95	14	5	19	
11735	736	0,204	3,24	14	6	20	
11740	799	0,222	3,52	16	7	23	
11745	870	0,242	3,83	19	8	27	
11750	936	0,260	4,12	21	10	31	
20700	1020	0,283	4,49	22	12	34	
20740	1081	0,300	4,76	22	13	35	
20770	1195	0,332	5,26	22	16	38	
20820	1335	0,371	5,88	23	20	43	
20860	1483	0,412	6,53	23	24	47	
20880	1581	0,439	6,96	23	28	51	
20920	1774	0,493	7,81	24	35	59	
20940	1833	0,509	8,07	24	37	61	
20990	2080	0,578	9,16	25	48	73	
21030	2251	0,625	9,91	26	56	82	
21060	2319	0,644	10,21	27	60	87	
21090	2448	0,670	10,78	28	67	95	


Accessories

Extension piece for actuator						
h = 20 mm	I	48-5557				
Strainer						
DN15		41-1132				
Ball Valve	9					
DN15		38-5020				
Strainer l	Ball	Valve				
DN15		38-5040				
Spindle E	xte	nsion				
DN15/20		46-1072				
Compres	sion	coupling				
39-1432	DN	15 x Ø8 mm				
39-1433	DN	15 x Ø10 mm				
39-1434	DN	15 x Ø12 mm				
39-1435 DN						
39-1435	DN	15 x Ø15 mm				
39-1435 PEX coup						
	oling					
PEX coup	DIING					

Alu-PEX coupling

31-2441 DN15 for Ø16 x 2 mm

Press coupling 1-2831 DN15 for Ø15 mm

6

Frese EVA - on/off control & automatic balancing valve

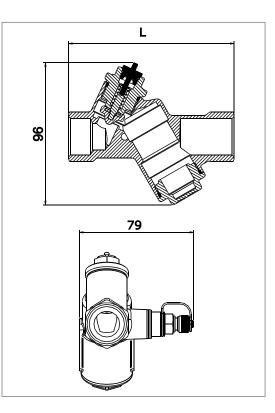
Technical data Frese EVA

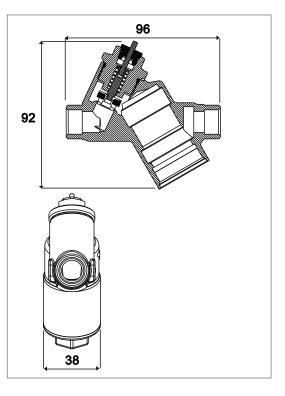
Technote

Valve Housing: O-rings: Pressure class: Temperature: Ambient temperature: Flow range: Max. differential pressure: Weight: Dimension packaging	DZR Brass, CW602N EPDM PN25 0 to + 95°C 0 to + 50°C See page 3 400 kPa 0,7 kg
Dimension packaging in mm:	135 x 115 x 85

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets. See application example. Valve height incl.actuator = 135 mm Lenght of stroke = 2,15 mm

Frese A/S assumes no responsibility if another

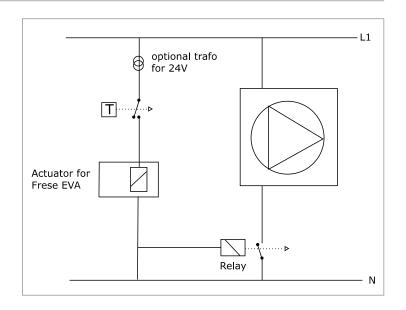

Dimensions								
	DN15	DN20	DN25					
L	102	110	119					


Technical data Frese EVA Basic

Valve Housing:	DZR Brass, CW602N
O-rings:	EPDM
Pressure class:	PN16
Temperature:	0 to + 95°C
Ambient temperature:	0 to + 50°C
Flow range:	See page 3
Max. differential pressure:	400 kPa
Weight:	0,7 kg
Dimension packaging	
in mm:	135 x 115 x 85

Glycolic mixtures (both ethylene and propylene) up to 50% are applicable with Frese Alpha. Strainer is recommended. The pipe system should be properly ventilited to avoid the risk of air-pockets. See application example. Valve height incl.actuator = 135 mm Lenght of stroke = 2,15 mm

Frese A/S assumes no responsibility if another actuator than the Frese actuator is used.

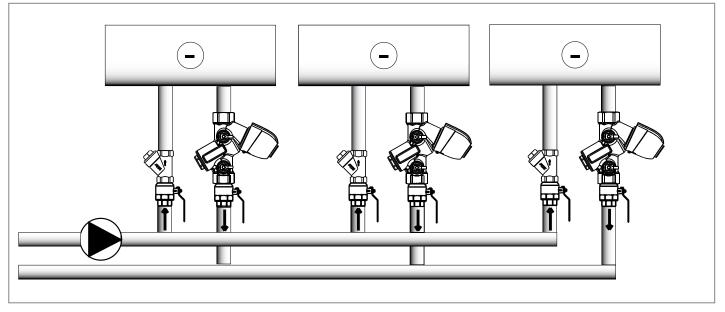


Electric Diagram

Example: You may let the valve signal run the fan engine of the unit, so that the fan engine is not running when the valve is closed.

Technote

The valve is "normally closed". The power consumption of the actuator is 2 Watt.


Application Example

The system is easily adjusted by adjusting the pump in accordance with the required differential pressure across the critical valve.

When this differential pressure is achieved, the system will automatically be balanced.

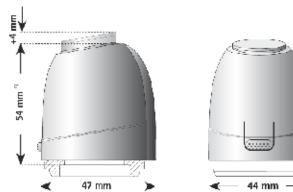
Min. Differential pressure = the lower limit of the operating range of the Alpha flow cartridge plus the pressure drop of the EVA valve at design flow.

See required min. Pressure of the cartridge on page 3.

Documentation formular

Valve ID	Valve type (EVA)	Dimension [DN]	Cartridge No.	DP _P measured [kPa]	Min. DP _P [kPa]	Flow [l/h]
np type						
ulation form						
point						
allation						
nature			Date			

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.



Actuator for Frese EVA

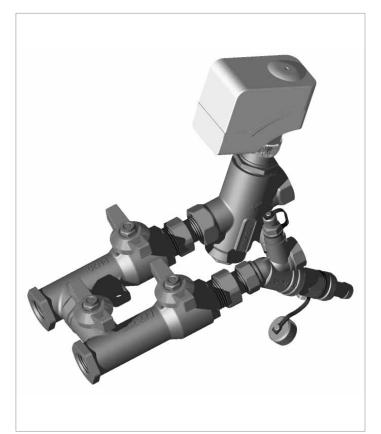
Туре	48-5515	48-5518
On/off	On/off	On/off
Power supply	24V AC/DC	230V AC
Power consumption	1.8W	1.8W
Closing and opening time	Approx. 3 min.	Approx. 3 min.
Actuator travel	4 mm	4 mm
Force	100N	100N
Ambient temperature	0-60ºC	0-60°C

Design

	Normally closed	Normally closed
Protection	IP 54	IP 54
Colour of housing	Greyish white	Greyish white
Valve adapter	Included	Included
Weight (without adapter incl. 1m wire)	100 g	100 g
Connection wire	2 x 0,75 mm² PVC	2 x 0,75 mm ² PVC
Lenght of wire	1,0 m	1,0 m

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk



Application

The Frese MODULA is a compact and versatile valve system that combines the Frese range of automatic flow, pressure and temperature control valves with isolation, flushing, draining and measurement components within a prefabricated, tested and ready to install terminal connection assembly. The Frese MODULA integrates one of the following Frese pressure independent solutions:

- Frese ALPHA (Dynamic balancing valve)
- •
- Frese S (Adjustable dynamic balancing valve)
- Frese EVA (Combined dynamic balancing and 2 port on/off valve)
- Frese OPTIMA (Pressure Independent Control Valve -PICV)
- Frese PV (Adjustable Differential Pressure Control Valve)

With isolation valves, strainer, drain/hose connection & P/T plug.

Features

Benefits

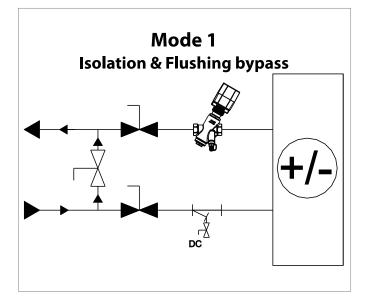
The Frese MODULA assembly combines the benefits of Frese OPTIMA, EVA and ALPHA in addition to:

Design

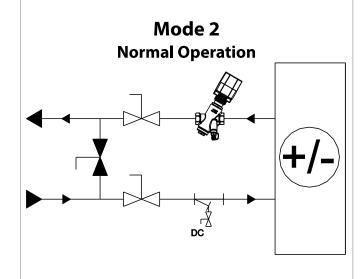
- Minimized design time and risks due to complete solution
- Guaranteed performance of the complete system
- Compact design for limited space availability

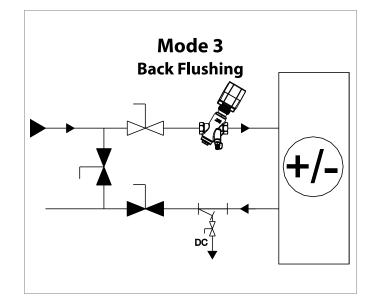
Installation

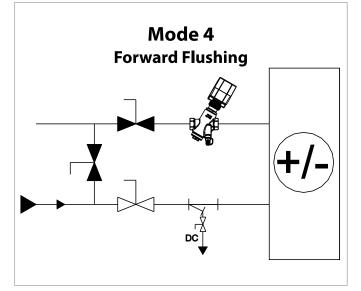
- Minimized installation and commissioning costs
- Allows easy flushing and coil isolation
- Easy lagging of spindle extensions
- Simple attachment to existing hangers
- Integrated fitting lug for ease of installation

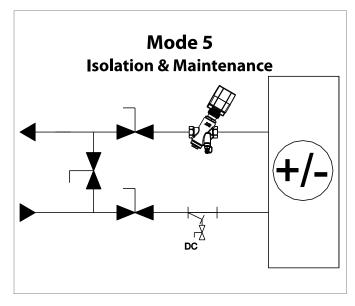

Operation

 High comfort with minimized operation and maintenance costs

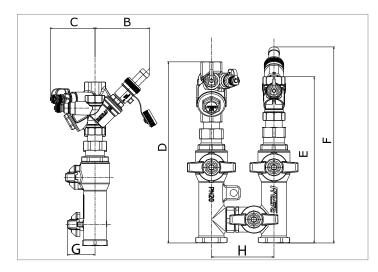

For a full understanding of ALPHA, EVA, S, PV and OPTIMA solutions please refer to the relevant Technotes.


- Available in 1/2", 3/4" and 1" end connections
- Patented Frese ALPHA, Frese S, Frese PV, Frese EVA or Frese OPTIMA technology
- Compact 80mm/130mm/170mm supply/return centres
- Integrated union joints for easy valve alignment
- ¾"T-handle isolation-valves for flow, return and bypass. Full port valves on flow and return
- Spindle extensions available
- Combinations with strainer, drain/hose connection, P/T plug available



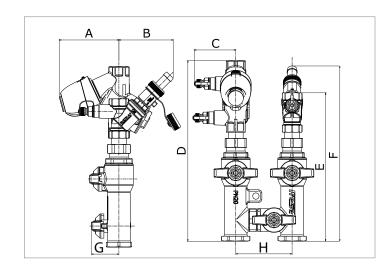


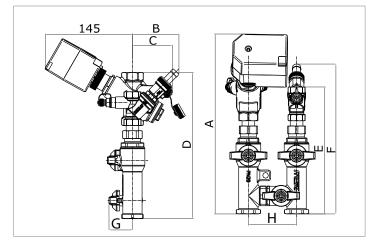
Technote


www.frese.eu

]			
[55	MODULA II Kit							
								1	Frese OPTIMA							
								2	Frese ALPHA	-						
								3		Frese EVA						
								4	Frese EVA Basic							
								5	Frese S							
	ſ							6 Frese PV								
		[_				
								1	DN15 - 80mm	4	DN15 - 130mm	7	DN15 - 170mm			
								2	DN20 - 80mm	5	DN20 - 130mm	8	DN20 - 170mm			
					 	 		3	DN25 - 80mm	6	DN25 - 130mm	9	DN25 - 170mm			
								1	T-piece with 1" P/T-plug + dr							
								2	T-piece with 1"P/T-plug + dr	ain, ho	ose and extension handle					
								3	Strainer with 1" P/T-plug + d	rain ar	nd hose					
								4	Strainer with 1" P/T-plug + d	rain, h	ose and extension handle					
								5	T-piece with 1"P/T- plug/plu	g						
								6	T-piece with 1" P/T- plug/plu	g and	extension handle					
								7	Strainer with 1" P/T- plug/plu	ıg						
								8	Strainer with 1" P/T- plug/plu	ig and	l extension handle					
								Α	T-piece with 1" P/T-plug + dr	ain an	d hose (Left hand mount)					
								В	T-piece with 1" P/T-plug + dr	ain, ho	ose and extension handle (Le	ft han	d mount)			
								С	Strainer with 1" P/T-plug + d	rain ar	nd hose (Left hand mount)					
								D	Strainer with 1" P/T-plug + d	rain, h	ose and extension handle (Le	eft han	id mount)			
								E	T-piece with 1" P/T-plug/plug	g (Left	hand mount)					
								F	T-piece with 1"P/T-plug/plug	g and	extension handle (Left hand	mount	:)			
								G	Strainer with 1" P/T-plug/plug (Left hand mount)							
								Н	Strainer with 1" P/T-plug/plu	g and	extension handle (Left hand	moun	t)			
								1	1" P/T Plug on valve							
								2	2" P/T Plug on valve							
								3	Plug							
									-							
								L	Low Flow							
								Н	High Flow							
								4	Low Pressure							
								5	High Pressure							
								XXXX	Flow in l/sec. (X.XXX)							
55	х		х	Х	х	Х										
			er	Modula II combination	бn	Flow/Pressure	Je									
	Valve		Size/Center	dula vinat	Valve plug	Pres	Cartridge									
	>		ize/C	Mo	Valv	low/	Car									
			S	0		Ē										

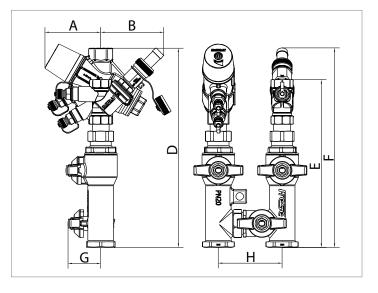
Specification text Frese MODULA:


The valve system shall combine a dynamic balancing valve with a fixed 80mm distance supply/return component. The balancing valve can also be a combination valve for dynamic balancing and control. Frese ALPHA, EVA, ALPHA Cartridges, OPTIMA (see corresponding technote).

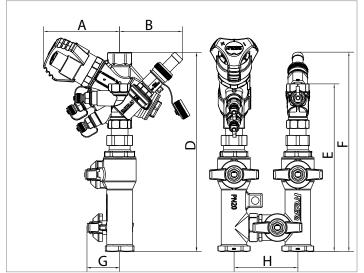


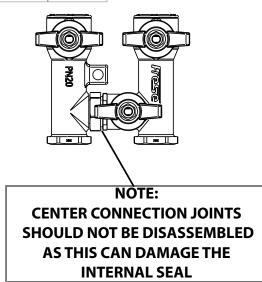
Technote

	MODULA - ALPHA										
	DN15	DN20	DN25								
Α	79	87	97								
С	63/102	63/102	63/102	1"PT/ 2"PT							
D	231	231	239								
Е	211	230	257								
F	249	266	293								
G	41/ 88	41/ 88	41/ 88	Std. Handle/ Ext Handle							
н	8	0/130/17	0								



	MODULA - EVA									
	DN15	DN20	DN25							
Α	85	85	85							
В	79	87	97							
С	59/ 98	59/ 98	59/ 98	1"PT/ 2"PT						
D	256	256	264							
Е	211	230	257							
F	249	266	293							
G	41/ 88	41/ 88	41/ 88	Std. Handle/ Ext Handle						
Н	8	0/130/17	0							


	MODULA - OPTIMA									
	DN15	DN20	DN25							
Α	298	298	298							
В	79	87	97							
С	66/ 100	66/ 100	66/ 100	1"PT/ 2"PT						
D	243	243	251							
Е	211	230	257							
F	249	266	293							
G	41/ 88	41/ 88	41/ 88	Std. Handle/ Ext Handle						
н	8	0/130/17	0							

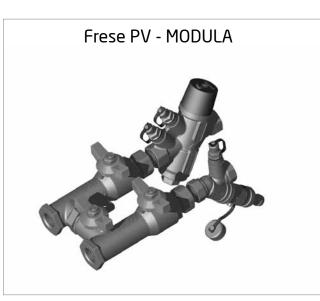


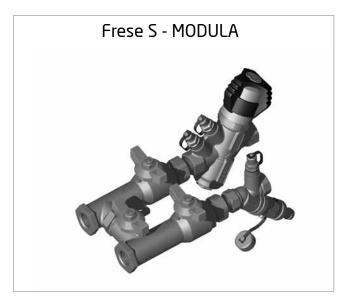
Technote

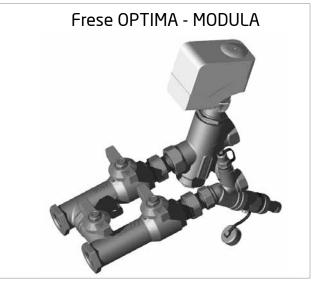
	MODULA - PV										
	DN15	DN20	DN25								
Α	70	73	91								
В	79	87	97								
D	250	251	257								
Е	211	230	257								
F	249	266	293								
G	41/ 88	41/ 88	41/ 88	Std. Handle/ Ext Handle							
н	8	0/130/17	0								

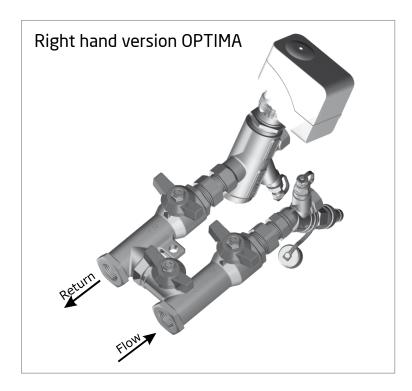
	MODULA - S										
	DN15	DN20	DN25								
Α	96	98	102								
В	79	87	97								
D	250	251	257								
Ε	211	230	257								
F	249 266		293								
G	41/ 88	41/ 88	41/ 88	Std. Handle/ Ext Handle							
н	8	0/130/17	0								

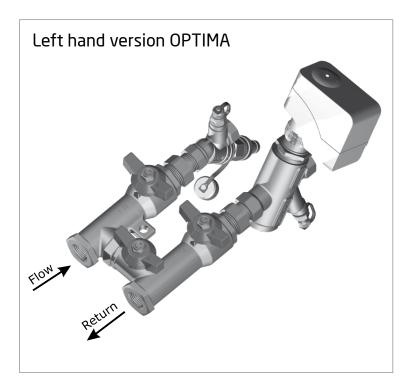
www.frese.eu


7


Technote


Frese MODULA Complete solutions for balancing and temperature control





Frese MODULA Complete solutions for balancing and temperature control

UK Frese MODULA DEC. '09

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Te

Application

Frese PV can be installed in domestic and commercial heating and cooling systems.

Technote

The valve is a dynamic, adjustable differential pressure control valve (DPCV) that ensures the differential pressure across the load or circuit is constant.

The valve ensures good modulating control and reduces the risk of noise from thermostatic radiator valves and 2-port control valves.

Frese PV can be installed in conjunction with Frese S (adjustable flow limiter) to provide 100% control of the flow and differential pressure regardless of pressure fluctuations in the system. See PVS Technote.

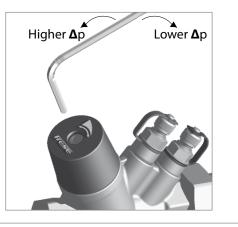
Benefits

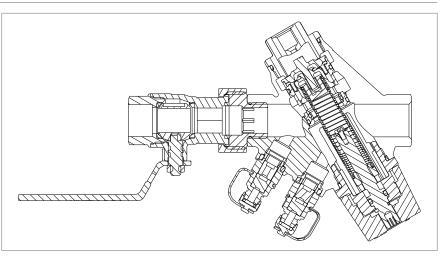
- The valve offers three in-built functions: adjustable differential pressure control, isolation and P/T plugs for pressure verification
- Frese PV eliminates noise problems caused by over pressure
- Differential pressure can be set and adjusted on site
- Tamper-proof presetting device on top of the valve, meaning there is no need for the valve sealing after presetting
- Presetting is simple using the graphs shown on pages 9-13

Features

- Maximum differential pressure: 400 kPa
- Removable ΔP cartridge allows forward as well as backflushing
- Size range: DN15 to DN50
- Maximum flow: 15m³/h
- Built-in P/T plugs for ΔP verification

Setting the valve


The valve is easily set by means of a 4mm hexagonal key. The flow rate of the valve can be determined from the flow rate graphs for the valve dimension in question. See the flow rate graphs of the valve on pages 9 and 13 for further information about the Pre-setting.

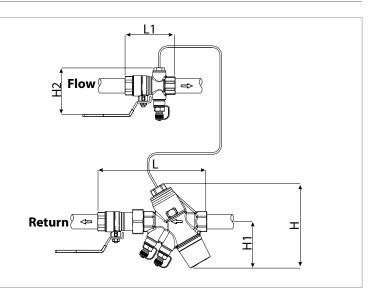

Technote

To set the valve to the desired downstream differential pressure, the valve should be set at the minimum position and then adjusted in accordance with the presetting graphs.


Design

Frese PV consists of a differential pressure regulation unit, isolating ball valve, P/T-plugs and partner valve which is installed in the flow.

Frese PV system fem./fem. with union and isolation ball valve



Frese PV - Adjustable differential pressure control valve

Technical data

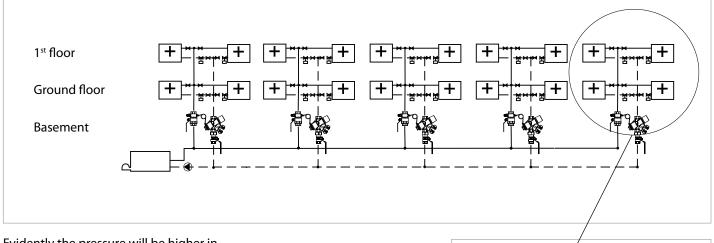
Housing: D2	ZR, Brass
DP controller: PF	PS 40% glass
Flow setting: PF	20
Spring: St	ainless steel
Diaghragm: H	NBR
O-rings: EF	PDM
Pressure class: PN	N16
Max. differential pressure: 40	00 kPa
Temperature range: -1	0°C to + 120°C
Capillary tube: Ø	3, L = 1000mm

Frese PV System - Valve combination, capillary tube, isolation ball valve at the supply- and return line.

Туре

Application

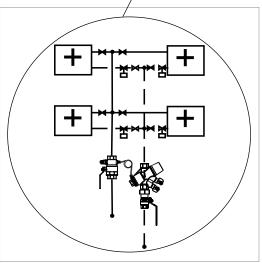
Two pipe systems


Frese PV

Dimension		DN	115	DN20		DN25		DN32	DN40	DN50
Control range	[kPa]	5-30	20-60	5-30	20-60	5-30	20-60	20-80	20-80	20-80
	[l/s]	0,014-0,167	0,028-0,333	0,028-0,278	0,042-0,556	0,167-0,694	0,194-1,167	0,278-1,389	0,833-2,222	1,389-4,167
Flow rate	[l/h]	50-600	100-1200	100-1000	150-2000	600-2500	700-4200	1000-5000	3000-8000	5000-15000
	gpm	0,22-2,65	0,44-5,29	0,44-4,41	0,66-8,82	2,65-11,02	3,09-18,52	4,41-22,05	13,23-35,27	22,05-66,14
Dimension mm	L	10	67	1:	73	2	32	235	257	286
	Н	12	27	1:	30	1	66	166	184	196
	H1	7	0	7	'3	ç	91	91	97	106
	L1	7	75 82		95		100	108	127	
	H2	9	95	103		111		135	145	164
Accuracy		+/-	7%	+/- 7%		+/- 7%		+/- 7%	+/- 7%	+/- 7%
	Kvs	3	,6		4	9	,5	11,4	16,4	17,9

Example

Outline of the heating system in one of the sections. 5 staircases with 4 flats each. Pump and tank farther away than indicated in the example.


Evidently the pressure will be higher in the supply pipes near the pump than e.g. in the critical pipe.

In this case the purpose of Frese PV is to maintain pressure of approx. 12 kPa across the supply and the return line.

Specifying the characteristics of the building, the calorific requirement was rated at 125 l/h per flat.

Motor valves were chosen for the control of the flow. The Kvs-value of these should be as close to 0.36 m³/h as possible. (125 l/h and 12 kPa), $Q = Kv * \sqrt{\Delta p}$.

As already mentioned a differential pressure of 12 kPa should be maintained at a flow of $4 \times 125 = 500$ l/h. From the scheme on page 3, which shows the technical data of Frese PV, a Frese PV DN15 will be suitable for the purpose.

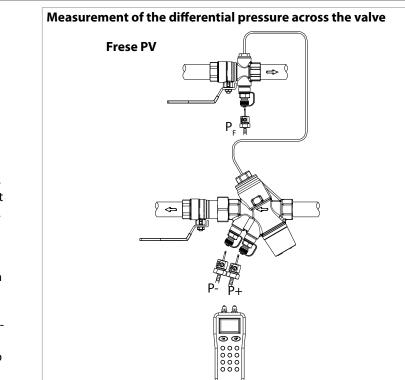
Index Circuit

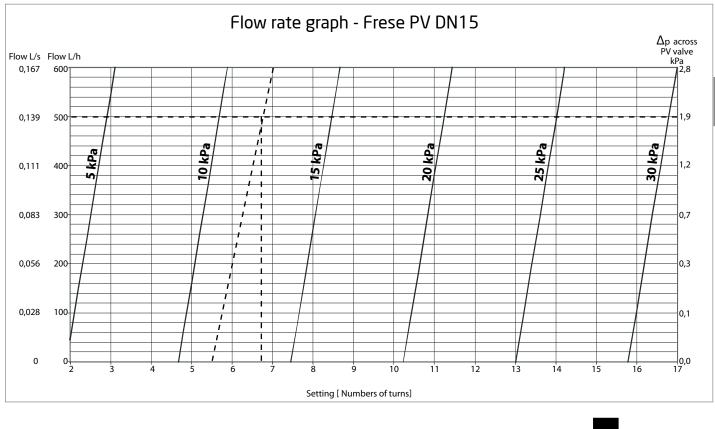
Example

The adjustment setting of the Frese PV⁺ valve is specified on the basis of the graph. In order to make reading easier the graphs indicating the pressure in the circuit are arranged at intervals of 5 kPa. Still, the graphs can be offset according to the specified pressure of 12 kPa in our circuit.

Technote

In the given example we want to maintain 12 kPa in the circuit at a flow rate of 500 l/h. From the intersection of the 12 kPa graph and the horizontal line indicating 500 l/h a line perpendicular to the x-axis is made to read the pre-set value. Now you will see that the valve is to be pre-set by app. 7 turns on the scale.

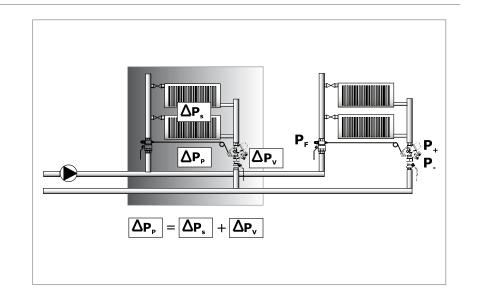

The minimum pressure drop required will be 1.9 kPa across the valve.

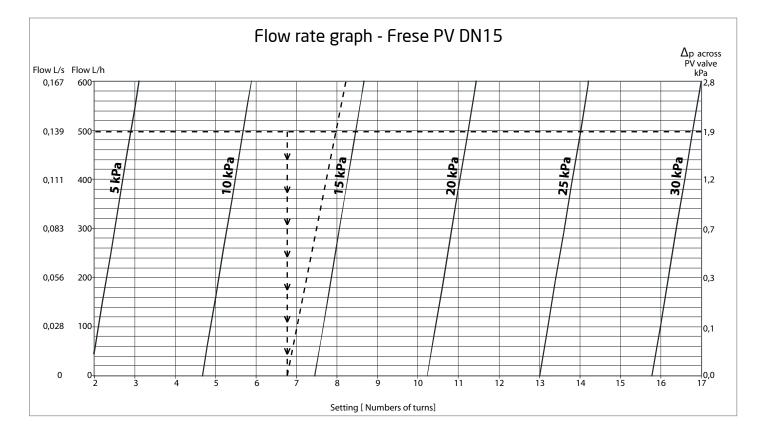

Consequently, the total pressure drop required when rating the pump will be:

 $\Delta P_{p} = \Delta P_{s} + \Delta P_{v} = 12 + 1.9 = 13.9 \text{ kPa.}$

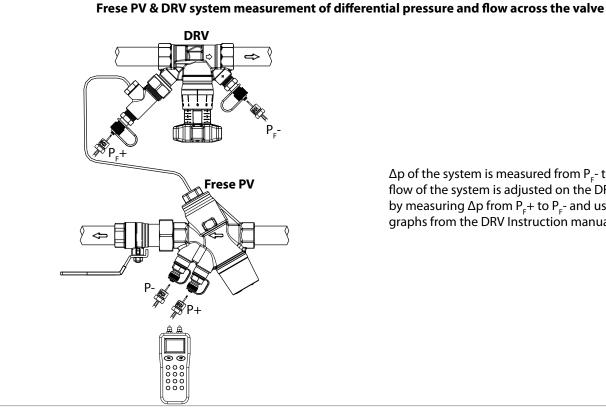
Now the pump can be throttled to operate at its optimum, by measuring from P_F to P- (ΔP_{pump}). To verify that the calculated secondary pressure drop

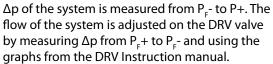
To verify that the calculated secondary pressure drop across the circuit is correct, measurements can be carried out from P_F to P+, and should read 12 kPa as dimensioned.

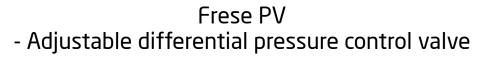

Example

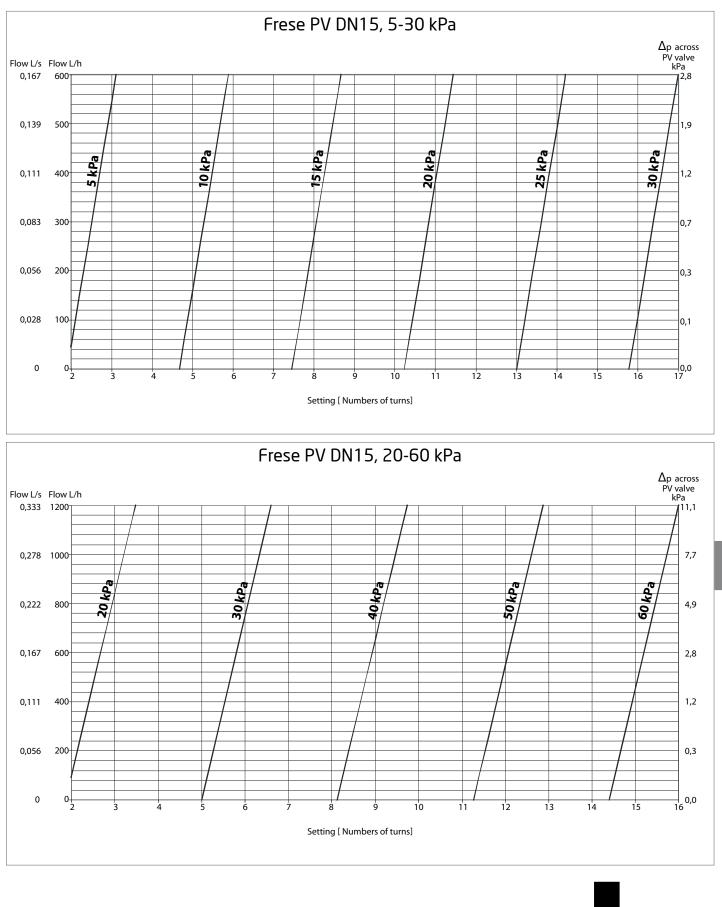

Please note:

As the flow is reduced in the circuit in question the pressure increases in reverse ratio to the flow, which is due to the P-band of the adjustment spring. The valve still compensates for this. However, the pressure will nowhere in the circuit be as high as the pump pressure that would have been available if Frese PV had not been installed.


Technote

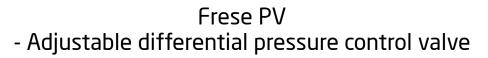

In this example the pressure increases to approx. 14 kPa as the graph is offset parallel to the course of flow. Furthermore, you can always read from the graph what the pressure in the circuit will be like at any flow rate below the rated 500 l/h.

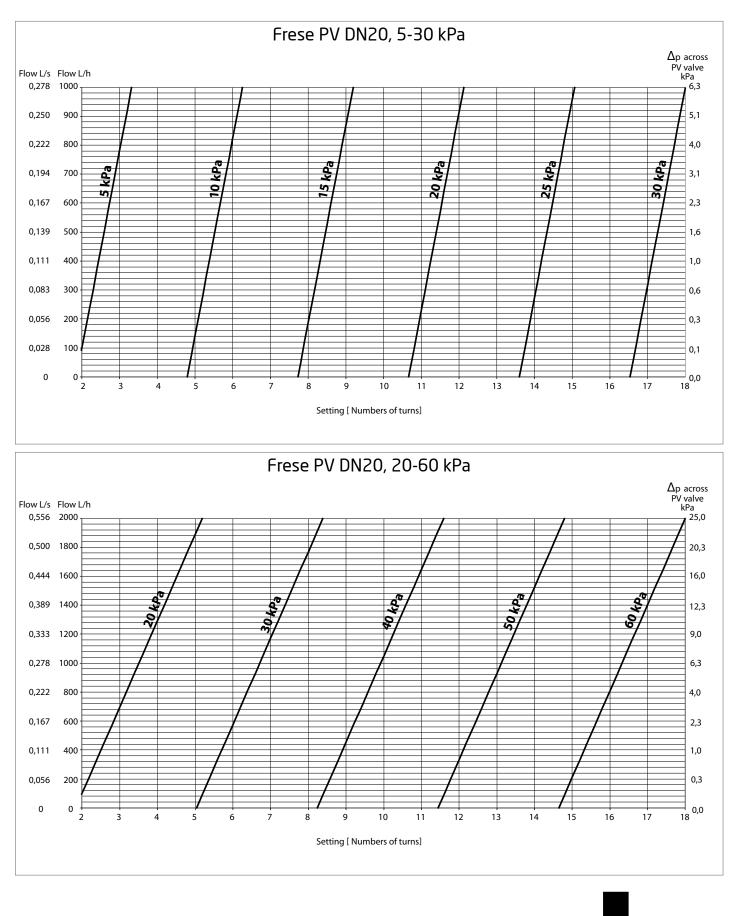

Frese PV - Adjustable differential pressure control valve


Product programme PV

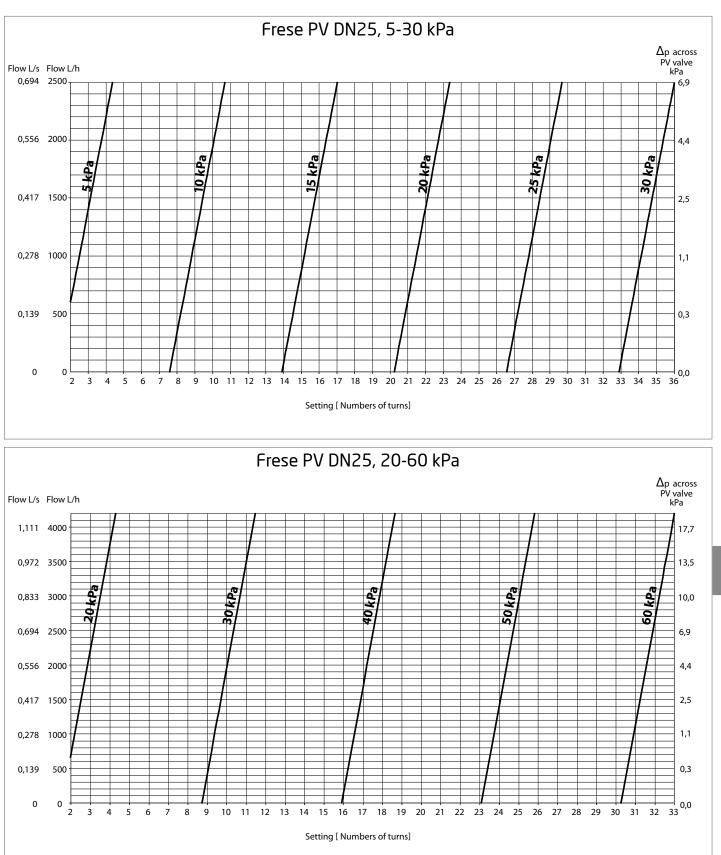
	Dimension	DN15	DN20	DN25	DN32	DN40	DN50
With isolation ball-valves, 2 drain valves, plug, capillary tube and union connection.		53-3000 (5-30 kPa)	53-3001 (5-30 kPa)	53-3002 (5-30 kPa)	53-3003 (20-80 kPa)	53-3004 (20-80 kPa)	53-3005 (20-80 kPa)
With isolation ball-valves, 1" P/T plugs, capillary tube and union connection.		53-3010 (5-30 kPa) 53-3016 (20-60 kPa)	53-3011 (5-30 kPa) 53-3017 (20-60 kPa)	53-3012 (5-30 kPa) 53-3018 (20-60 kPa)	53-3013 (20-80 kPa)	53-3014 (20-80 kPa)	53-3015 (20-80 kPa)
With DRV, 1" P/T plugs, capil- lary tube and union connec- tion. Adjust DRV according to Mounting instruction.		53-3030 (5-30 kPa) 53-3031 (20-60 kPa)	53-3032 (5-30 kPa) 53-3033 (20-60 kPa)	53-3034 (5-30 kPa) 53-3035 (20-60 kPa)	53-3036 (20-80 kPa)	53-3037 (20-80 kPa)	53-3038 (20-80 kPa)

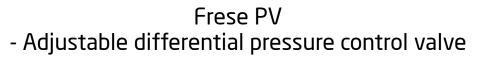
Accessories		Frese no.	Dim./DN
Insulation jackets		38-0845	PV 15/20/25
		38-0854	PV 32/40/50
		38-0856	VC 15/20/25
		38-0848	VC 32/40/50
Spindle extension		46-1072 46-1073 46-1074 46-1075	15/20 25 32/40 50
Frese capillary tube 3mm x 1000 mm	Ũ	48-0004	
Drain valve		48-0009	1/4″ x 1/2
Plug	E[]D	09-0548	
Combi drain valve		48-0015	1/4″ x 1/2
P/T plugs Blue strip		48-0012 48-0013 48-0014	1/4" x 1" 1/4" x 2" 1/4" x 4"
Red strip		48-0018 48-0019 48-0021	1/4" x 1" 1/4" x 2" 1/4" x 4"
Frese manometer 2023P Digital differential pressure manometer hose kit and needles.		48-0022	
Hose kit incl. needles		48-0016	

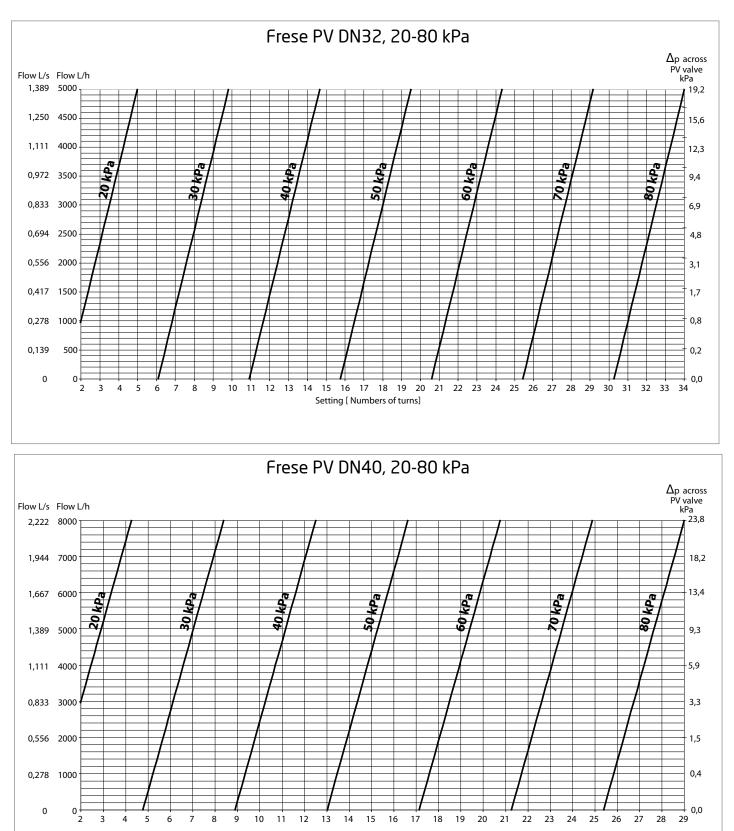

frese

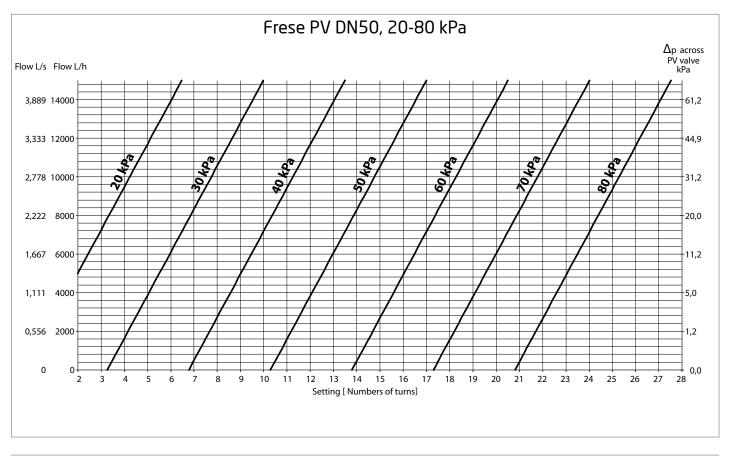


ree









www.frese.eu

Setting [Numbers of turns]

Text for technical specifications

Technote

The valve should be a dynamic difference control valve with the option of setting the differential pressure on site without suspension of operation.

The valve should limit the differential pressure in a circuit.

The valve should include optional P/T plugs for the verification of differential pressure in circuit and across the valve.

The valve scale should only be adjustable by means of a key.

The valve should be permanently marked with an indicator for flow direction.

Pressure rating PN16.

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Frese PVS - Dynamic Pressure and Flow Regulation Valve

Application

Frese PVS system can be installed in domestic and commercial heating and cooling systems.

Technote

Frese PVS system is a dynamic valve arrangement designed to regulate flow and differential pressure using the Frese S dynamic balancing valve positioned in the flow, and the Frese PV differential pressure control valve positioned in the return.

The PVS is supplied with capillary tube, isolation valves, drain valves, P/T plugs and unions as standard.

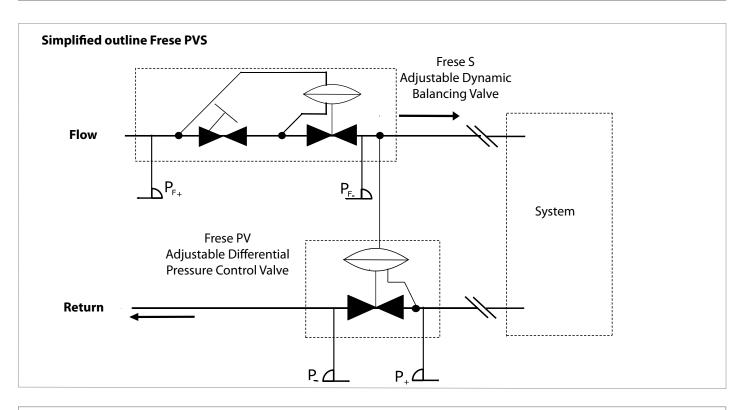
Frese PVS system ensures 100% flow and differential pressure regulation under all conditions, irrespective of any changes within the system, providing simple and trouble free commissioning.

The Frese PVS system operates by limiting the flow in the system and eliminating any noise caused by excess differential pressure.

Benefits

- Flow and differential pressure can be adjusted independently of each other.
- Setting the differential pressure can be easily adjusted after installation.
- Tamperproof presetting device fitted on the top of the valve.
- Simple presetting of flow and pressure.
- No additional commissioning required if the system design is changed.
- High levels of comfort and energy savings for the end user.

Features


- Size range: DN15 to DN50
- Maximum flow: 10.3m³/h
- Maximum differential pressure 250kPa/400kPa
- Setting range: 5kPa to 80kPa
- Differential pressure regulation, flow regulation, isolation, drain and PT plugs as standard

Frese PVS - Dynamic Pressure and Flow Regulation Valve

Design Frese PVS

Frese PVS - Dynamic Pressure and Flow Regulation Valve

Technical data

Housing: DP controller: Flow setting: Spring: Diaghragm: O-rings: Pressure class: Max. differential pressu Temperature range: Capillary tube:	DZR, Brass CW602N PPS 40% glass PPO Stainless steel HNBR EPDM PN16 re: LP = 250 kPa HP = 400 kPa -10°C to + 120°C Ø3, L = 1000mm	H3
	Return <>	
Туре	Frese PVS	

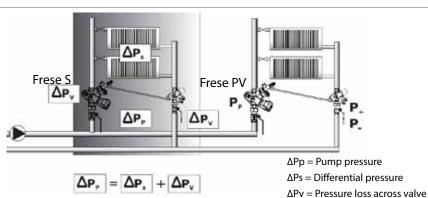
Application			Two-pipe system							
Dimension		DN	115	DN	120	DN	125	DN32	DN40	DN50
Version		LP	HP	LP	HP	LP	HP	HP	HP	HP
Control range	[kPa]	5-30	20-60	5-30	20-60	5-30	20-60	20-80	20-80	20-80
Pressure range	[kPa]	9-250	22-400	9-250	22-400	12-250	22-400	38-400	45-400	54-400
	PV	0,014-0,167	0,028-0,333	0,028-0,278	0,042-0,556	0,167-0,694	0,194-1,167	0,278-1,389	0,833-2,222	1,389-4,167
Flow rate [l/s]	S	0,007-0,223	0,011-0,306	0,011-0,351	0,018-0,512	0,017-0,462	0,025-0,653	0,060-1,328	0,049-2,067	0,122-2,868
	PVS	0,014-0,167	0,028-0,306	0,028-0,278	0,042-0,512	0,167-0,462	0,194-0,653	0,278-1,328	0,833-2,067	1,389-2,868
Dimension mm	L	10	67	12	73	23	32	235	257	286
	н	1:	27	13	30	16	56	166	184	196
	H1	7	0	73		9	1	91	97	106
	L1	10	67	173		202		235	257	286
	H2	9	6	98		102		115	119	126
	H3	14	48	1:	51	1:	55	188	206	219

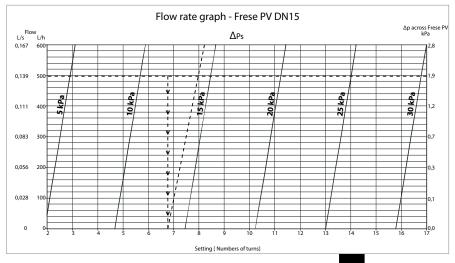
Frese PVS - Dynamic Pressure and Flow Regulation Valve

Product programme PVS

Technote

	Dimension	DN15	DN20	DN25	DN32	DN40	DN50
Frese PVS with 2 isolation valves, 2 drain valves, P/T		Frese PVS - LP 53-3040	Frese PVS - LP 53-3041	Frese PVS - LP 53-3042	Frese PVS HP 53-3023	Frese PVS HP 53-3024	Frese PVS HP 53-3025
plugs, capillary tube and union		Frese PV, 5-30 kPa & Frese S, LP	Frese PV, 5-30 kPa & Frese S, LP	Frese PV, 5-30 kPa & Frese S, LP			
connections.		Frese PVS - HP 53-3026	Frese PVS - HP 53-3027	Frese PVS - HP 53-3028	Frese PV, 20-80 kPa &	Frese PV, 20-80 kPa &	Frese PV, 20-80 kPa &
		Frese PV, 20-60 kPa & Frese S, HP	Frese PV, 20-60 kPa & Frese S, HP	Frese PV, 20-60 kPa & Frese S ,HP	Frese S, HP	Frese S, HP	Frese S, HP
Accessories			Fres	e no.		Dim./DN	
Insulation jackets	PV+S		38-()845		15/20/25	
		PV+S	38-0	0854		32/40/50	
Spindle extension			-	1072 1073		15/20 25	
			46-	1073 1074 1075		32/40 50	


Example


Please note:

As the flow is reduced in the circuit in question the pressure increases in reverse ratio to the flow, which is due to the P-band of the adjustment spring. The valve still compensates for this.

However, the pressure will nowhere in the circuit be as high as the pump pressure that would have been available if Frese PV had not been installed.

In this example the pressure increases to approx. 14 kPa as the graph is offset parallel to the course of flow. Furthermore, you can always read from the graph what the pressure in the circuit will be like at any flow rate below the rated 500 l/h.

frese

Frese PVS - Dynamic Pressure and Flow Regulation Valve

Example

Frese PVS DN15 Low Pressure

Design differential pressure 12 kPa Design flow 0,139 l/s

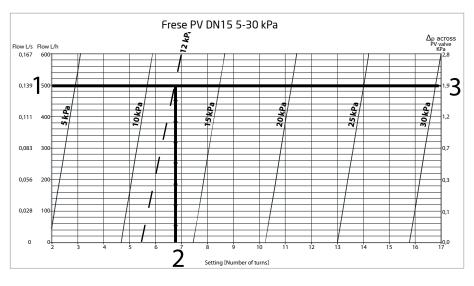
Technote

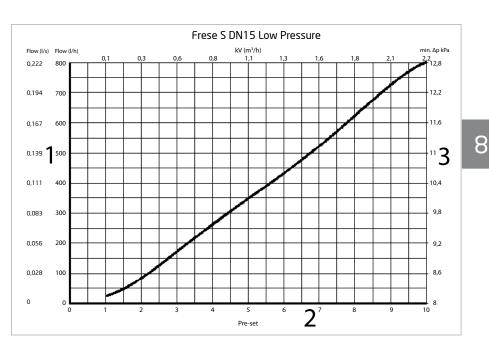
Differential pressure setting Frese PV

1. The design flow is used as the point of reference for the setting. (See the graph)

2. In order to make reading easier the graphs indicating the pressure in the circuit are arranged at intervals of 5 kPa. Still, the graphs can be offset according to the specified pressure of 12 kPa in our circuit. From the intersection of the 12 kPa graph and the horizontal line indicating 0,139 l/s a line perpendicular to the x-axis is made to read the pre-set value. Pre-set app. 7 turns on the scale.

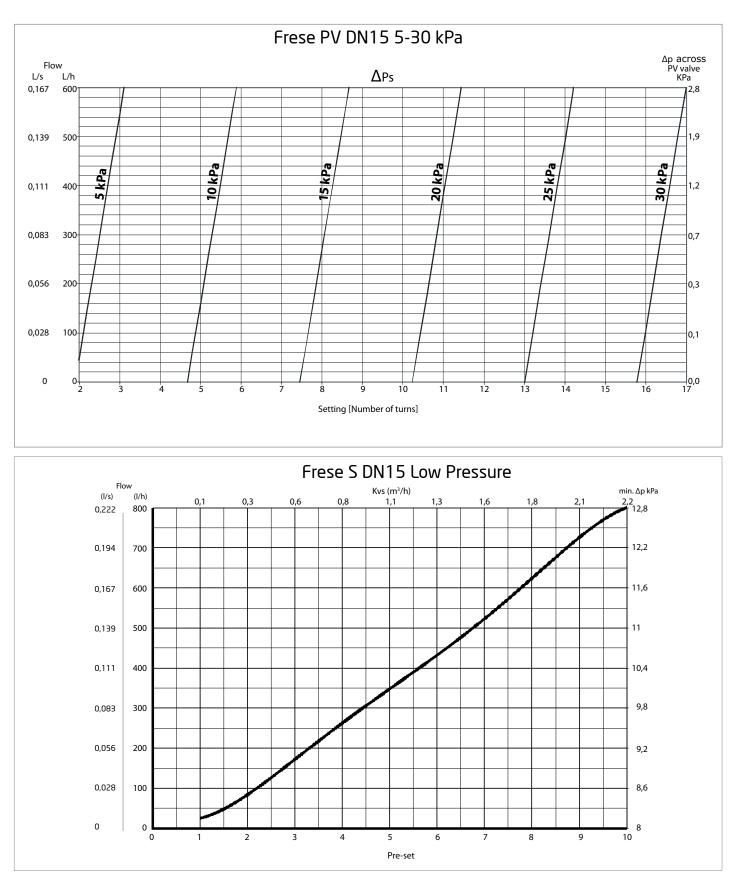
3. The minimum pressure drop required will be 1.9 kPa across the valve. (ΔP_{v_2})

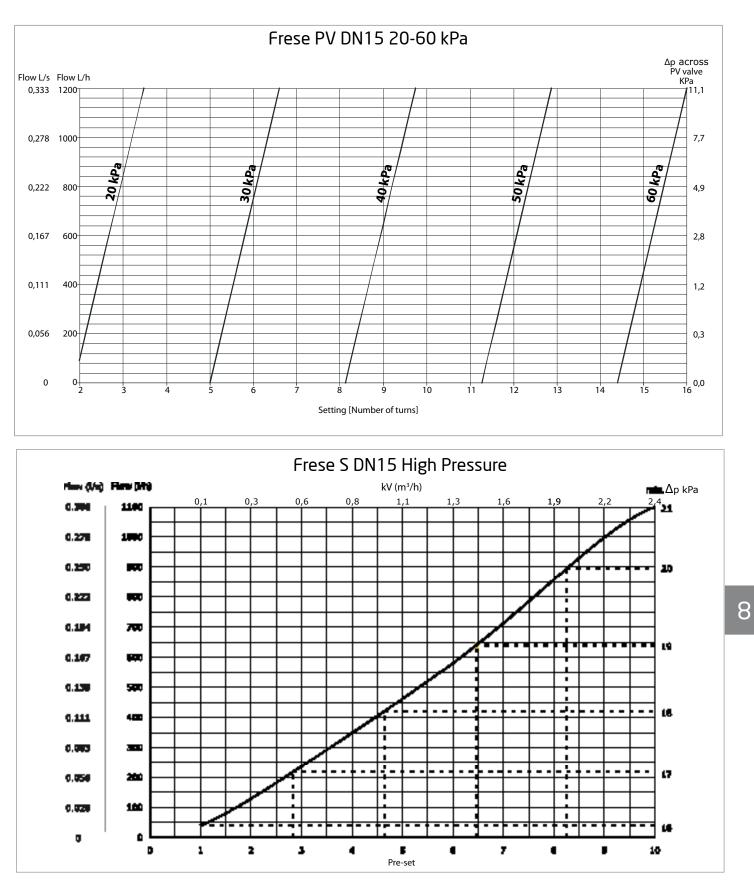

Flow setting Frese S


1 • The design flow is used as the point of reference for the setting. (See the graph)

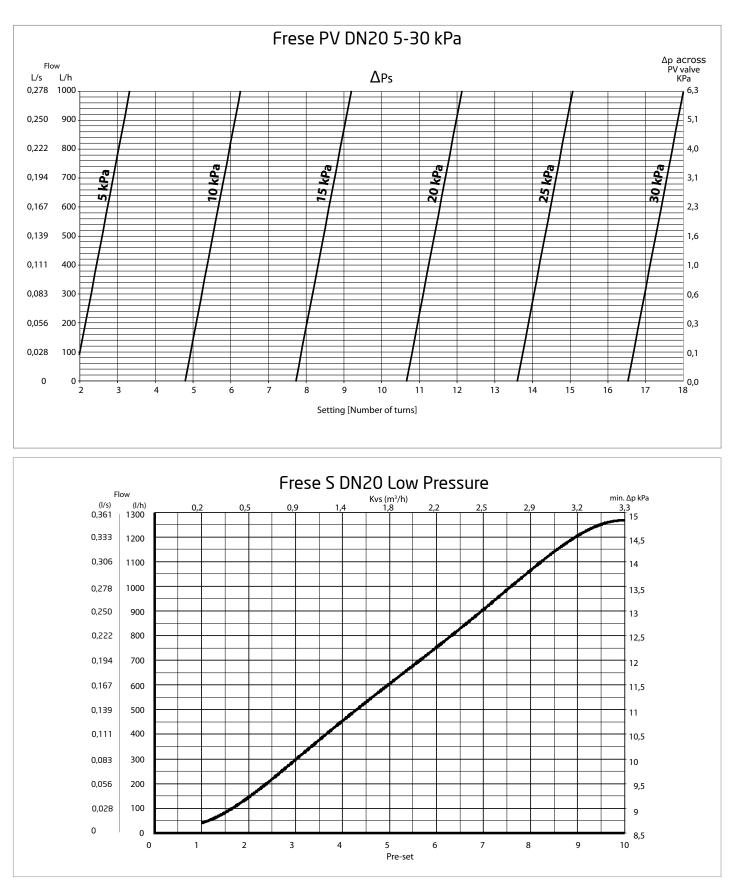
2. The pre-setting for the valve is found by means of the flow rate graph. Setting = 6.7

3. The minimum pressure drop required will be 11 kPa across the valve. (ΔP_{v_1})

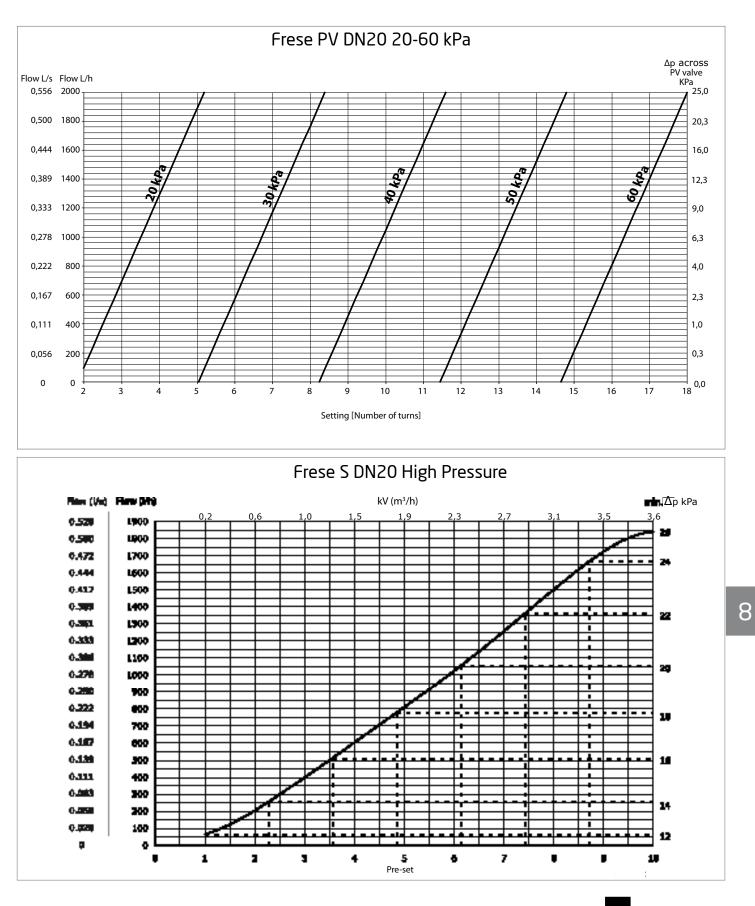

Total pump pressure Calculation of the total pump pressure: $\Delta Pp = \Delta Ps + (\Delta P_{V1+V2})$ $\Delta Pp = 12 \text{ kPa} + (11 \text{ kPa} + 1.9 \text{ kPa}) = 24.9 \text{ kPa}$



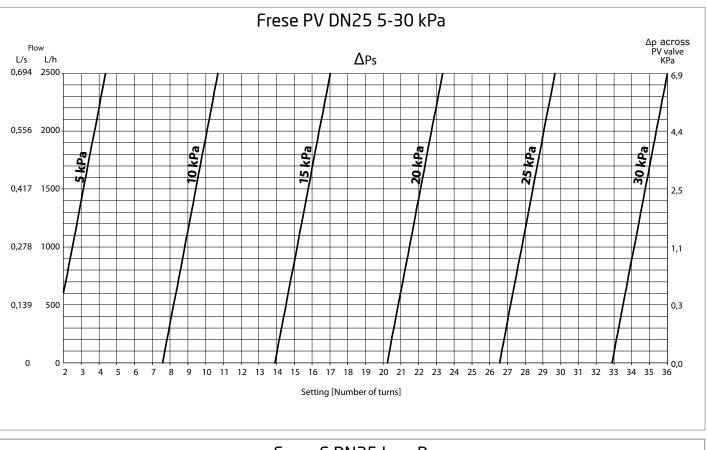
Frese PVS DN15 LP - Dynamic Pressure and Flow Regulation Valve

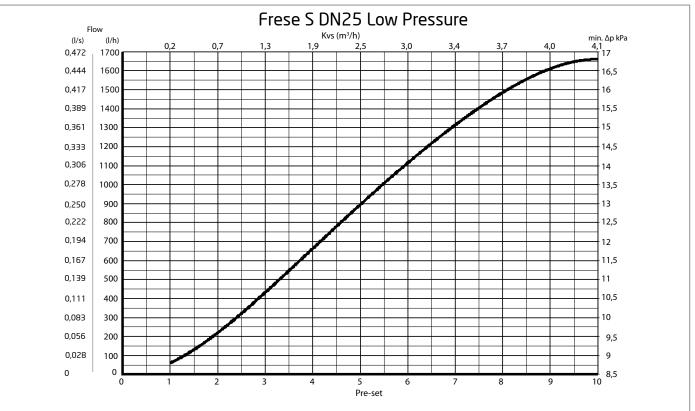


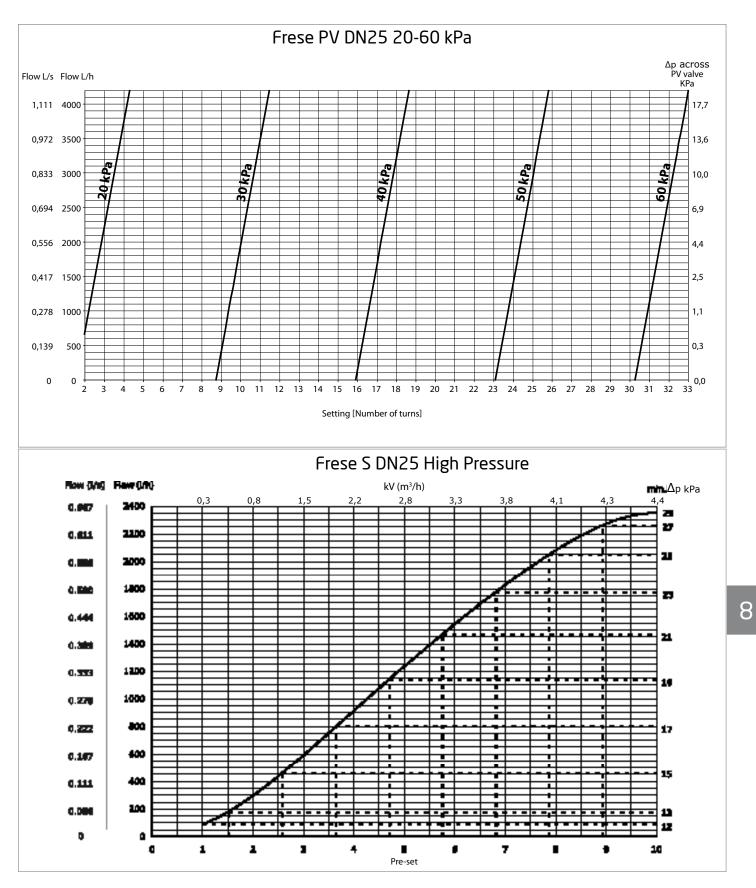
Frese PVS DN15 HP - Dynamic Pressure and Flow Regulation Valve

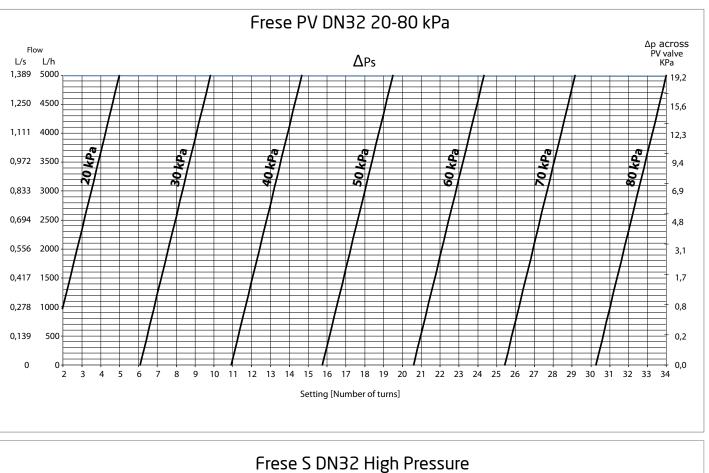


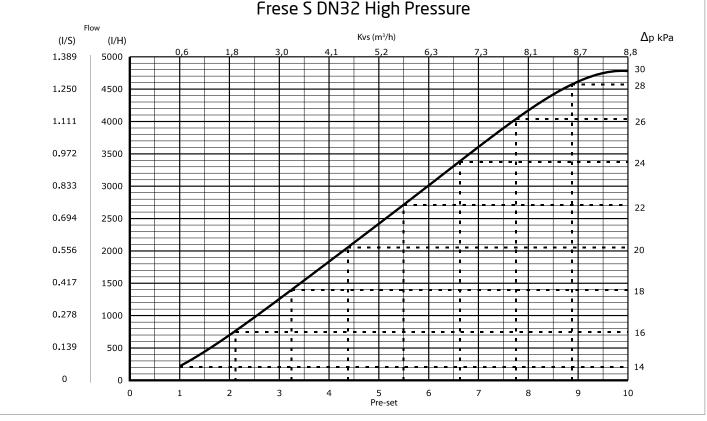
Frese PVS DN20 LP - Dynamic Pressure and Flow Regulation Valve



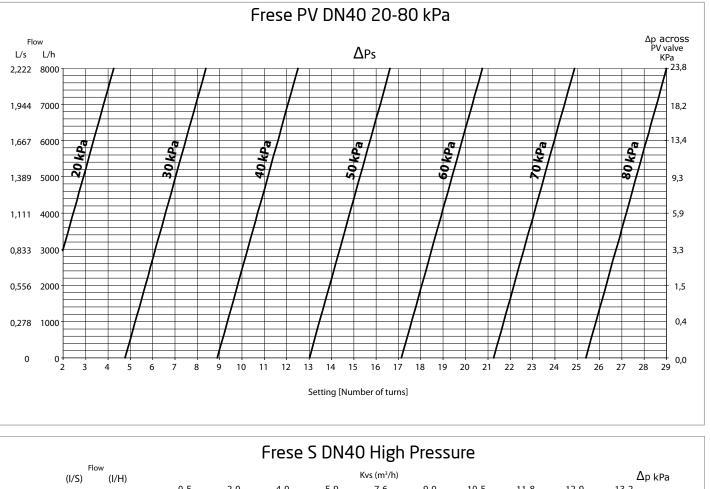

Frese PVS DN20 HP - Dynamic Pressure and Flow Regulation Valve

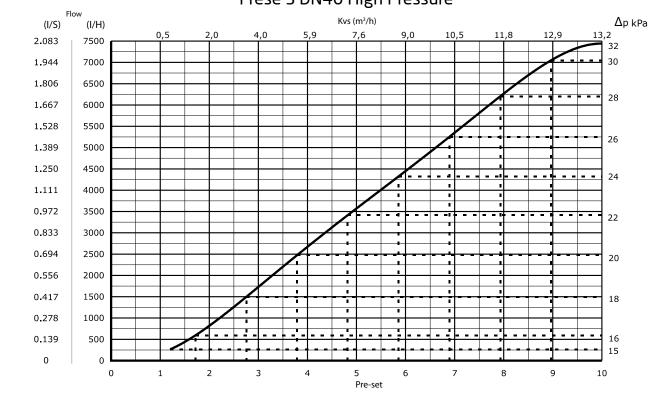


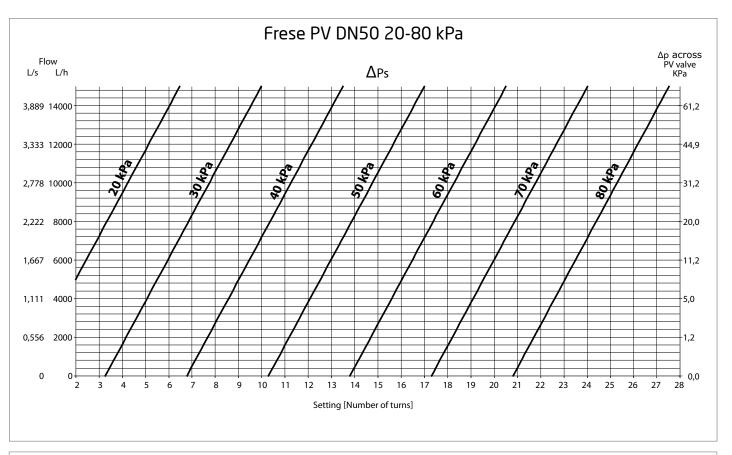


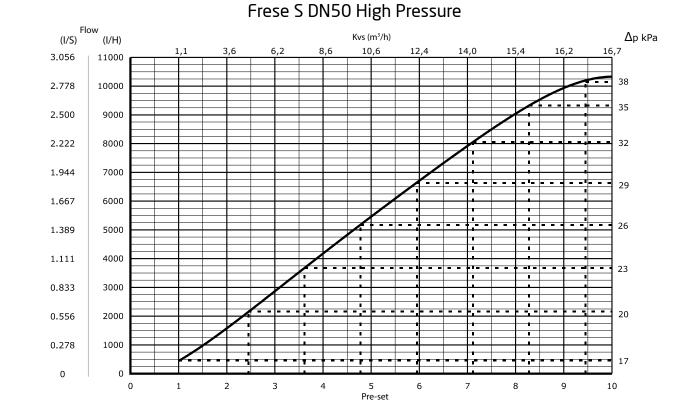

Frese PVS DN25 HP - Dynamic Pressure and Flow Regulation Valve

Frese PVS DN32 HP - Dynamic Pressure and Flow Regulation Valve






Frese PVS DN40 HP - Dynamic Pressure and Flow Regulation Valve


Technote

l Frese

Frese PVS - Dynamic Pressure and Flow Regulation Valve

Text for technical specifications

The valve should be a dynamic differential pressure and flow control valve with the option of setting the differential pressure and flow on site without suspension of operation.

The valve should limit the differential pressure in a circuit.

The valve should include optional P/T plugs for the verification of differential pressure in circuit and across the valve.

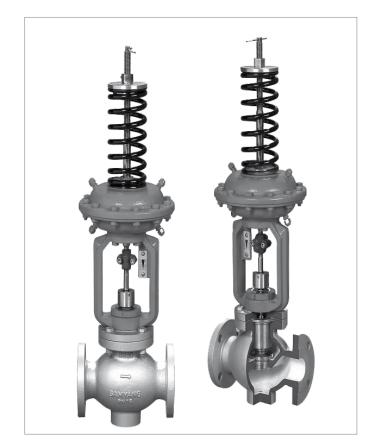
The differential pressure control valve scale should only be adjustable by means of a key.

The flow control valve should only be adjustable by means of a lockable handle.

The valve should be permanently marked with an indicator for flow direction.

Pressure rating PN16.

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.


Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk

Application

Frese YDF-2F is used in central heating-, ventilation-, and district heating systems.

This model is a high-performing differential pressure control valve installed in the supply or return piping line of loaded equipment and regulates the differential pressure.

Benefits

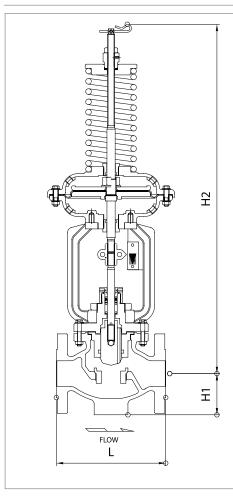
Design

- The valve construction integrated with the Equal % Cone provides additional wide range of control of differential pressure and flow.
- Being diaphragm split-system, there is no influence by temperature and being perfect balance type, solid set pressure-differential value is ensured.
- Strong construction guarantees high durability.
- Being diaphragm type, installation in the horizontal and the vertical position is possible.

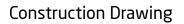
Operation

- High comfort for the end-users due to no noise problems from control valves
- Easy adjustment of the pressure by Equal % Cone.

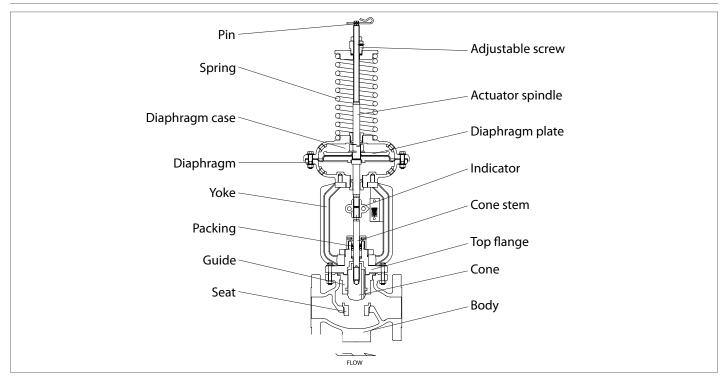
Features


- Easy to install and adjust according to selection diagram.
- Maintenance time will be referred in acc. with whether leaking water visually.
- Valve lifting can be checked thru the installed indicator.
- Sizes from DN25 to DN150

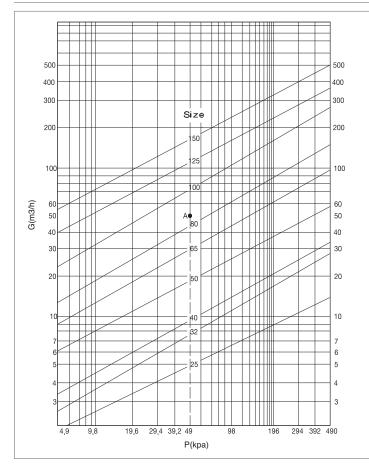
Specifications


ltems		YDF-2F		
Applicable pressure		PN16		
Applicable fluid		Hot & cold water		
Flow temperature		Max 170°C		
Construction		Diaphragm		
Differential pressure adjustment range (kPa)	50-200		
End connection		EN 1092-2 PN16		
Materials	Body	Ductile Iron		
Materials	Diaphram	EPDM		
Valve body pressure test		Water 24 Bar		
Capillary tube		Standard 2m		

Technical data

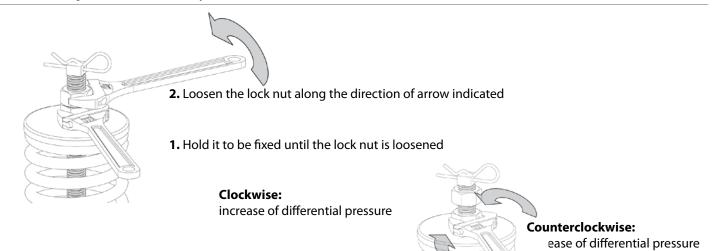


		Dimension				
Model		•	YDF-2F			
Size	L	H1	H2	Weight (kg)		
DN25 (1″)	184	62.5	640	20		
DN32 (11/4")	180	70	650	26		
DN40 (11/2")	222	80	658	28		
DN50 (2")	254	95	670	41		
DN65 (21/2")	276	115	720	48		
DN80 (3")	298	120	720	56		
DN100 (4")	352	130	735	72		
DN125 (5")	400	150	775	130		
DN150 (6")	451	180	800	162		



Technote

Selection of valve size


$$Cv = \frac{1.167 \text{ x } Q \text{ x } \sqrt{r}}{\sqrt{\Delta P}}$$

- Cv: Coeffience of valve
- Q: Flow (m³/h)
- r: density (water = 1)
- Δ: differential pressure across
 - valve (kg f/cm²)

How to adjust differential pressure

Technote

How to adjust differential pressure

Make sure to fully comprehend the following cautions in handling the products so that the product may display it performance.

- 1. Do not apply any impact on it
- 2. Avoid any place with dust or humidity when storing it
- 3. A special attention should be paid so that any impurities are not inserted into the product
- 4. When attaching it onto a pipe, the location should be free of sand or debris while a point of gasket should be also cleaned up
- 5. It should be installed on a place easy to access for repair

* The structure, dimensions and materials may be changed without any prior notice for the improvement of performance.

Maintenance tips

Stuffing nut box packing leaking

- 1. Locking after checking gate valve Main valve locking
- 2. Pressure pipe valve locking
- 3. Slowly loosening after checking the height of the spring speciefied
- 4. Seperating the pressure pipe
- 5. Loosening after checking the height of indicator ^oØs stamp thread
- 6. Slowly loosening Stuffing nut boxStop diassembly if water continuously flows
- 7. Checking and replacing the packing and reversely assembling it

O-ring leaking

- 1. Checking and locking gate valve
- 2. Pressure pipe valve locking
- 3. Checking and slowly loosening the height of spring specified
- 4. Separating the pressure pipe
- 5. Loosening after checking the height of ^oØs stamp thread
- 6. Disassembling the actuator
- 7. If it's rusty excessively, it should be ground with soft sand paper
- 8. Replace O-ring and assembling it

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk

UK Frese YDF-2F NOV. '09

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

www.frese.eu

Frese Commissioning Unit AC 6

Application

Frese AC 6 is used for the measurement of differential pressure and thereby flow in a given installation equipped with Frese valves.

Technote

A measuring the actual valve is selected in the menu. Flow and required differential pressure will then be displayed.

The system is easily commissioned as the pump is adjusted in accordance with the required minimum differential pressure across the critical valve.

Min. differential pressure = the lower limit of the operating range of the valve/cartridge.

Once this differential pressure is available the system will automatically be balanced.

The Commissioning Unit is easily operated by means of the enclosed, detailed instruction for use. A quick start guide is also included.

Frese Commissioning Unit AC 6

Technical data

Operating temperature:	From 0°C to 95°C (ambient temperature) Please note: The manometer should not be exposed to frost
Static pressure:	Max. 20 bar
Differential pressure:	Max. 6 bar
Battery:	1 pcs. 9V
Weight:	615 g
Dimensions:	200 x 120 x 40

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Insulation jackets for Frese S and PV

Application

The insulation jackets have been specifically designed for the insulation of Frese S, and PV valves.

Technote

Insulation of valves may reduce the temperature in control room, boiler room, and pipe tunnels. Resulting in a more agreeable working temperature, reduced thermal loss and, consequently, better heat economy year after year.

Benefits

Easy installation and removal

Features

- Fire resistant in accordance with the fire rating B2, DIN4102
- Resistant to most chemicals. Will not be attacked by dry rot or mold
- Does not absorb moisture and, unlike "wet" mineral wool does not become conductive to heat

Insulation jackets for Frese S and PV

Technical data

Technote

Material: Water absorption: Temperature range: Insulating property:

EPP (Expanded Polypropylene) < 2,5 vol% at 20°C up to 120°C Lamda = 0.039 W/mk (20g/l)

(must only be used in heating applications)

Product programme

	All measurements in mm.
Frese no. 38-0845 For Frese S and PV valve DN15/20/25	H=94 W=172 L=250
Frese no. 38-0846 For combination ball valve in supply side of Frese S and PV DN15/20/25	H=94 W=133 L=150
Frese no. 38-0854 For Frese S and PV valve DN32/40/50	H=125 W=200 L=215
Frese no. 38-0848 For combination valve in supply side of Frese S and PV DN32/40/50	H=130 W=167 L=180

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk

Frese Manometer 2023P

Application

Freses digital manometer for the measurement of differential pressure in a given installation equipped with Frese valves.

The manometer features are:

- On/off
- Automatic reset
- Illuminated display
- "Out of measuring range"
- Hold function
- Hose kit incl. needles

The manometer is easily operated by means of the enclosed, detailed instructions for use.

After measuring, the actual value is compared with the min. required differential pressure across the installed flow rate cartridge (see cartridge catalogue or Tech-Note).

The system is easily adjusted as the pump is adjusted in accordance with the required differential pressure across the critical valve.

Once this differential pressure is available the system will automatically be balanced.

Min. differential pressure = the lower limit of the operating range of the valve/ cartridge. See cartridge catalogue/ TechNote.

Freses handy manometer 2023P. Hose kit including needles.

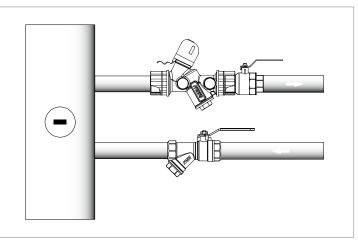
Technical data	
Operating temperature:	From 10°C to 50°C (ambient temperature) <i>Please note: The Manometer</i> <i>should be exposed to frost.</i>
Operating range:	7 bar
Overrange:	10 bar
Batteries:	Two pcs. AA <i>Please note:</i> <i>Batteries are not enclosed</i>
Environmental specifications:	IP67
Auto switch-off time:	12 minutes
Dimensions:	155 x 67 x 40 mm
Weight:	180 g
	Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 9 frese@frese.dk

-rec

Frese Strainers

Application

Frese strainers are particularly designed and manufactured in order to provide maximum protection of the pipeline equipment against particles and other impurities. They are necessary in all fluid, steam and non-flammable gas systems where the presence of dirt could result in high operating, maintenance and replacement costs.


Technote

The fluid enters the Frese strainer and passes into the interior of a cylindrical screen. While the fluid passes through the screen, all particles larger than the screen mesh are trapped in the screen. When the filter is removed from the strainer, it acts as a container for the accumulated impurities.

The Frese strainers can perform in both horizontal and vertical installations provided that the direction of flow, as marked on the strainer, is always respected and that the filter, for vertical pipes, is situated downwards.

Benefits

- Low installation costs.
- Trouble and noise free operation of the other components of the system, thus higher performance and lower operation costs.
- Longer life cycles thus less time and costs for maintenance and lower replacement costs over time.
- The filter can be easily replaced without removing the body of the strainer from the pipe.

A Frese strainer ball valve in the supply line combined with a Frese EVA (two way automatic balancing valve) in the return line of a cooling/heating unit.

Features

- The use of DR brass for the body and stainless steel for the filter provides excellent corrosion resistance.
- The design of the strainer ensures that the filter is positively sealed to the body ensuring better particle retention.
- The choice of the filter mesh (32, hole size 0.5 mm) ensures high filtering performance.
- A wide range of dimensions and operating temperatures gives the flexibility for use in different applications.

9

Frese Strainers

Frese Strainer Ball valve (2 in 1)

A very compact solution, important in applications where space is restricted and installation time is limited.

Technical data					
Valve Housing: Filter: Gasket: Pressure rating Temperature: Mesh: Connections: Accessories:	Stainless ste PTFE (see temper 32 (0.5mm) fem/fem	fication Resistant Bra eel rature and pressure d ention available			
Frese no.	Dimensions	Kv	Weight (kg)	L (mm)	H (mm)
38-5040	DN15	2.7	0.316	77	40
38-5041	DN20	5.7	0.448	92	43
38-5042	DN25	6.5	0.810	115	49

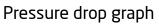
Specification text

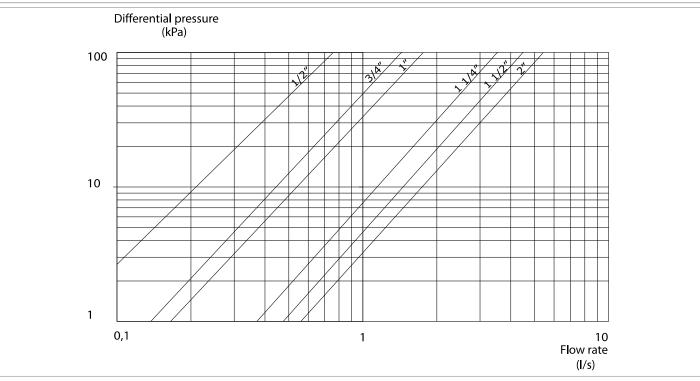
The housing of the strainer ball valve should be made of DR brass; the filter should be replaceable and made of stainless steel. The filter mesh should be 32 (0.5mm). The pressure class should be PN20. The strainer should allow operation in temperatures up to 110°C.

Frese Strainer

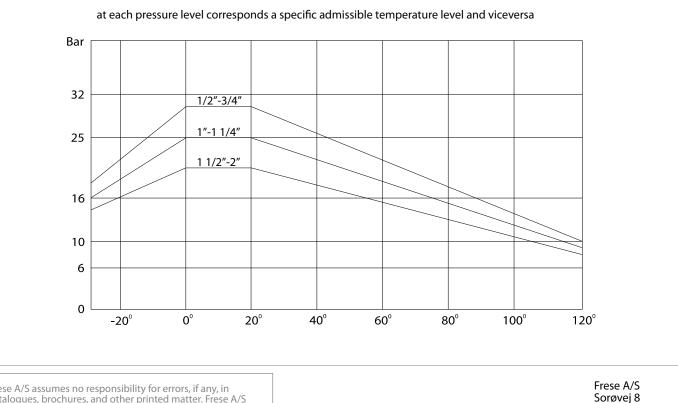
A very simple and efficient solution perfectly interacting with the other components of the system.

Technical data


Technical data				Contraction of the second	ment fille
Valve Housing: Filter: Gasket: Pressure rating: Temperature: Mesh: Connections:	DR, Dezincit Stainless ste PTFE PN20 -20°C to 150 32 (0.5mm) fem/fem		s		
Frese no.	Dimensions	Kv	Weight (kg)	L (mm)	H (mm)
41-1132	DN15	2.7	0.158	56	41
41-1142	DN20	5.7	0.282	69	50
41-1152	DN25	6.5	0.440	82	62
41-1162	DN32	13.7	0.638	90	71
41-1172	DN40	17	0.820	101	78
41-1182	DN50	19	1.280	121	96


Specification text

The housing of the strainer ball valve should be made of DR brass; the filter should be replaceable and made of stainless steel. The filter mesh should be 32 (0.5mm). The pressure class should be PN20. The strainer should allow operation in temperatures up to 150°C.



Frese Strainers

Pressure temperature diagram

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

9

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 frese@frese.dk

Application

CirCon⁺ and TemCon⁺ are control valves designed for domestic hot water installations with circulation.

Technote

The valves automatically control the temperature of the water that circulates through the valves. Thus the thermal balance is ensured throughout the domestic hot water system. The valve is adjusted on a scale to a desired temperature in the interval between 37°C and 65°C.

TemCon⁺ is equipped with a by-pass located outside the thermal part of the valve.

So, TemCon⁺ is suited for hot water installations with bacterial problems, e.g. Legionella. Here a procedure of raising the temperature of the water to between 70° C and 80° C is carried out at certain intervals.

Advantages

CirCon⁺ and TemCon⁺

- The thermostatic element is located out of contact with the circulating water, and its dry location prevents scale problems.
- The setting of the valves is stepless between $37^{\circ}C$ and $65^{\circ}C$ at an accuracy of $+/-2^{\circ}C$.
- Each valve is calibrated separately.
- The valves are coated with tin/nickel, which is an anticorrosive coating.
- Wide range of couplings.

TemCon⁺:

- By-pass for high temperature operation from 70°C to 80°C.
- By-pass adjustment occurs by hand or actuator.

CirCon⁺/TemCon⁺ - Thermostatic Valves for Domestic Water

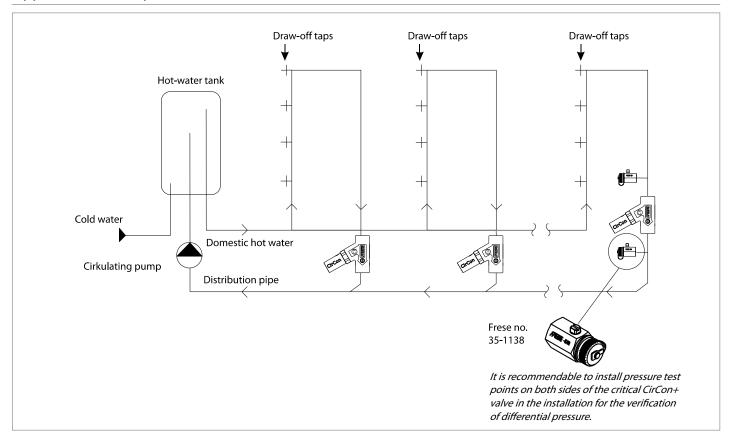
CirCon⁺ Thermal control

CirCon⁺ controls on the basis of the temperature of the water that circulates through the valve. If the valve is set to a temperature of e.g. 50°C, and the temperature of the circulating water is under 50°C, the valve opens. If the temperature is over 50°C, the valve closes.

Technote

CirCon⁺ fem./fem. with scale and built-in isolation ball valve.

CirCon⁺ Temperature setting between 37°C and 65°C. Remove the cap, and the temperature is easily set e.g. by a screwdriver as shown here.



Frese CirCon⁺ with press-couplings, and Frese CirCon⁺ with Cu-couplings. Ready for installation!

Application Example - CirCon⁺

Technote

Dimensioning example - CirCon⁺

CirCon⁺ is dimensioned on the basis of the thermal loss in the circuit, in which it is located. An example of dimensioning CirCon⁺ and the overall quantity of water for the circulating pump is described in the following.

In an installation with 4 floors and basement a circulation line is dimensioned.

The following parameters should be known for the calculation of the flow rate.

Length of pipe: 30 meters. Total length of pipe controlled by CirCon⁺.

Thermal loss: 9 W/meter pipe. Thermal loss in an external 27 mm pipe with 30 mm insulation and a difference of 40°C between room temperature and temperature of the fluid.

Δ temperature differential: 5°C.

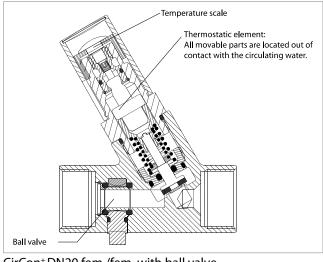
Temperature in hot-water tank 55° C. CirCon+ was set to 50° C on the scale. The flow rate of CirCon+ can be found from the following formula:

$$Q = \frac{(30m \times 9w/m) \times 0.86}{5^{\circ}C} = 46 \text{ I/h}$$

So, the total quantity of water from 3 delivery pipes to the circulating pump is approx. 138 l/h (3 x 46 l/h).

The Kv-value of CirCon⁺ at 46 l/h and a differential pressure of 10 kPa across the valve can be found from the following formula:

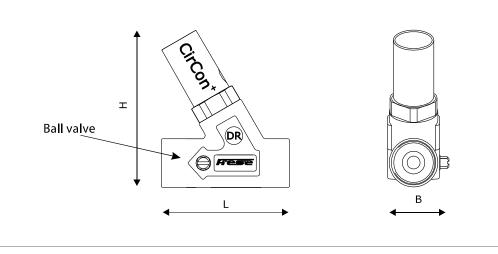
$$Kv = \frac{Q}{\sqrt{\Delta p}} = \left(\frac{46}{\sqrt{10}}\right) / 100 = 0.15$$



 $\mathbf{0}$

Technical data - CirCon⁺

Technote


Materials:	
Valve body:	DZR Brass, CW602N
O-rings:	EPDM
Springs:	Stainless steel
Element:	Wax
Plastic parts:	POM, ABS, PC
Surface coating:	Tin/Nickel
Temperature range:	37ºC - 65ºC
Accuracy:	+/- 2ºC < 100 kPa Dp
P-band:	10ºC (Xp = 10K)
Max. Kv-value:	1.10 (m³/l)
Recommended differential	
pressure:	3 - 10 kPa
Max. differential pressure:	100 kPa
Max. static pressure:	PN10
Pressure range:	PN16

CirCon⁺ DN20 fem./fem. with ball valve

Product programme - CirCon⁺

Dimension	Frese no.	Weight [kg]	L x B x H
DN15 fem./fem.	47-2800	0.5	63/32/96
DN20 fem./fem.	47-2801	0.5	63/32/96
DN20 fem./fem. with ball valve	47-2802	0.6	79/37/96
DN20 male/male with ball valve	47-2803	0.6	79/37/96
Ø12 Cu/Pex with ball valve	47-2809	0.8	139/37/96
Ø15 Cu/Pex with ball valve	47-2810	0.8	139/37/96
Ø18 Cu/Pex with ball valve	47-2811	0.9	155/37/96
Ø22 Cu/Pex with ball valve	47-2812	0.9	155/37/96
Ø15 Press with ball valve	47-2815	0.7	117/37/96
Ø 18 Press with ball valve	47-2816	0.7	117/37/96
Ø22 Press with ball valve	47-2817	0.8	120/37/96

All CirCon+ valves have the approval of the Danish VA-Authorities.

CirCon⁺/TemCon⁺ - Thermostatic Valves for Domestic Water

TemCon⁺ - Control at two operating temperatures

TemCon⁺ was designed to control at two sets of temperatures, i.e.:

Technote

Normal operating temperature:

Normal operation occurs at temperatures from approx. 50°C to 60°C. That is economic operation at low precise flow rates, which ensures a high level of comfort at all draw-off taps and exact temperature in all circuits.

That is the most frequently applied operating range of the valve.

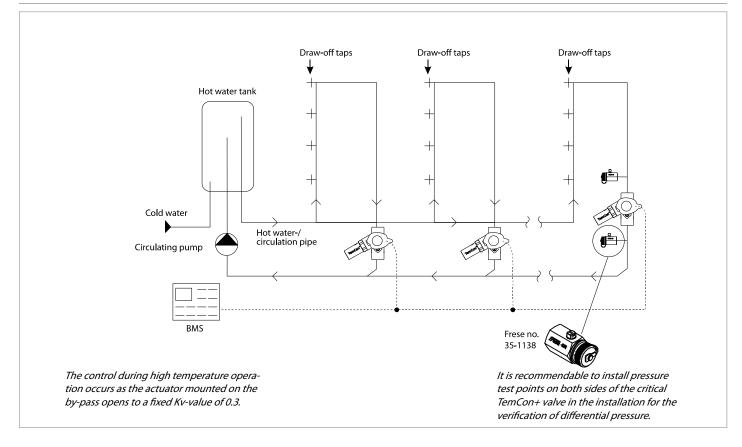
High operating temperature:

High operating temperature is used at intervals for the pasteurization of domestic water at 70° C to 80° C.

TemCon⁺ fem./fem. valves with scale by-pass and actuator by-pass respectively both of them with built in isolation ball valve.

TemCon⁺

The plastic cap is dismantied by means of a screwdriver that fits into the slot in the cap. Hereinafter the manually operated by-pass can be set steplessly to a Kv-value between 0.0 and 0.3.



Frese TemCon⁺ with press-couplings, and Frese TemCon⁺ with Cu-couplings. Ready for installation!

CirCon⁺/TemCon⁺ - Thermostatic Valves for Domestic Water

Application Example - TemCon⁺ Actuator operated by-pass

Dimensioning example - Acutaor operated by-pass

During normal operation:

During normal operation TemCon⁺ with actuator operated by-pass is dimensioned in the same way as thermal control (CirCon⁺ - see page 3).

High temperature operation:

The automatic heater or the BMS opens the by-pass to a fixed Kv-value of 0.3. In this example a sufficient quantity of water is ensured to compensate for the thermal loss in the pipe.

In an installation with 4 floors and basement a circulation line is dimensioned.

Length of pipe: 30 meters.

Total length of pipe controlled by TemCon⁺.

Thermal loss (high temperature operation): 14 W/meter pipe.

Thermal loss in an external 27 mm pipe with 30 mm insulation (laminated Rockwool) and a difference of 60°C between room temperature and pasteurization temperature.

Δ temperature differential: 8°C.

Between a temperature of 800C in the hot-water tank and a temperature of 72°C after TemCon⁺.

The flow rate Q of the TemCon⁺ valve can be found from the following formula:

$$Q = \frac{(30m \times 14w/m) \times 0.86}{8^{\circ}C} = 45 \text{ I/h}$$

The minimum differential pressure of the TemCon+ valve at a constant Kv-value of 0.3 can be found from the following formula:

$$\Delta p = \left(\frac{45}{0.3^* 1000} \right)^2 = 2 \text{ kPa}$$

Hydraulic balance

The application of a circulating pump with proportional control of the pump pressure is recommendable if a fixed Kvvalue of 0.3 is too much for the installation so that the hydraulic balance is upset. The pump compensates for increased flow by increasing the differential pressure.

Dimensioning example - adjustable by-pass

High temperature operation:

On the basis of the dimensioning example for actuator controlled by-pass and high temperature operation the flow rate is found from the formula:

$$Q = \frac{30 \times 14 \times 0.86}{8} = 45 \text{ l/h}$$

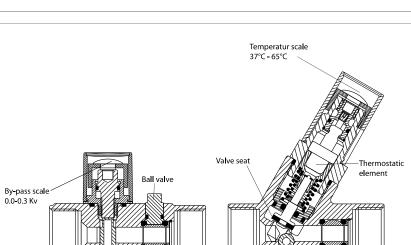
Technote

The differential pressure across TemCon⁺ at the given location in the system should be known in order to find the value of the adjustable by-pass.

Here we use 35 kPa across the valve. The value can be found from the formula:

 $Kv = \frac{Q}{\sqrt{\Delta p}} = \left(\frac{0.045}{\sqrt{0.35}}\right) = 0.08$

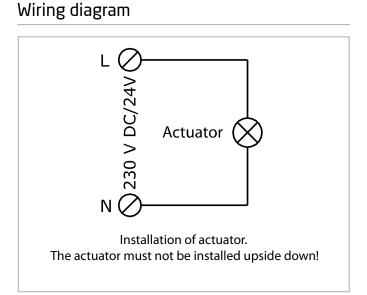
Consequently, the by-pass should be opened to min. 0.08 to ensure a temperature of 72°C after the valve.


Normal operation:

During normal operation it is recommendable to close the adjustable by-pass to gain all the benefits of the thermal control of the TemCon+ valve.

Technical data - TemCon⁺

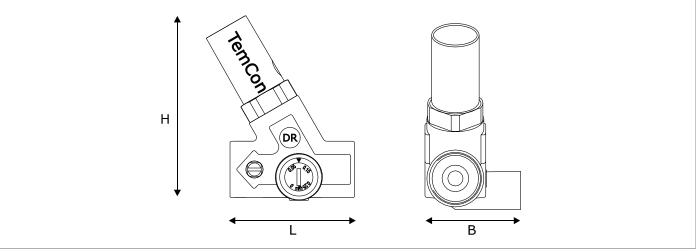
Materials:


Valve body:	DZR Brass, CW602N	
O-rings:	EPDM	
Springs:	Stainless steel	
Element:	Wax	
Plastic parts:	POM, ABS, PC	
By-pass:	Stainless steel	
Surface coating:	Tin/Nickel	
Temperature rating:	37ºC - 65ºC	
Accuracy:	+/- 2°C < 100 kPa Dp	
P-band:	10ºC (Xp = 10K)	
Max. Kv-value:	1.10 (m³/l)	
Recommended differential		
pressure:	3 - 10 kPa	
Max. differential pressure:	100 kPa	
Max. static pressure:	PN10	
Max. temperature:	100ºC	
Pressure rating:	PN10	Se

Section drawing of TemCon⁺ DN20 fem./fem. with ball valve

Actuator controlled by-pass:

Kv-value, open by pass:0.3 (m³/h)Running time:180 sec. from closed to fully openPower consumption:1,8WSupply voltage:24V DC/AC or 230 V AC



10

Product programme - TemCon⁺

Dimension	Frese no.	Weight [kg]	L x B x H
DN15 fem./fem.	47-2850	0.6	63/58/99
DN20 fem./fem.	47-2851	0.5	63/58/99
DN20 fem./fem. with ball valve	47-2852	0.6	79/58/99
DN20 male/male with ball valve	47-2853	0.6	79/58/99
Ø12 Cu/Pex with ball valve	47-2859	0.8	139/58/99
Ø15 Cu/Pex with ball valve	47-2860	0.8	139/58/99
Ø18 Cu/Pex with ball valve	47-2861	1.0	155/58/99
Ø22 Cu/Pex with ball valve	47-2862	0.9	155/58/99
Ø15 Press with ball valve	47-2867	0.8	117/58/99
Ø 18 Press with ball valve	47-2868	0.8	117/58/99
Ø22 Press with ball valve	47-2869	0.8	120/58/99
Accessories:			
Universal insulation	47-9001	0.03	165/73/118
Acutatorkit 230V	47-2866	0.15	79/86/120
Actuatorkit 24V	47-2865	0.15	79/86/120
Insulation for valve with actuator	47-9002	0.01	165/106/125

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Frese

ese.eu

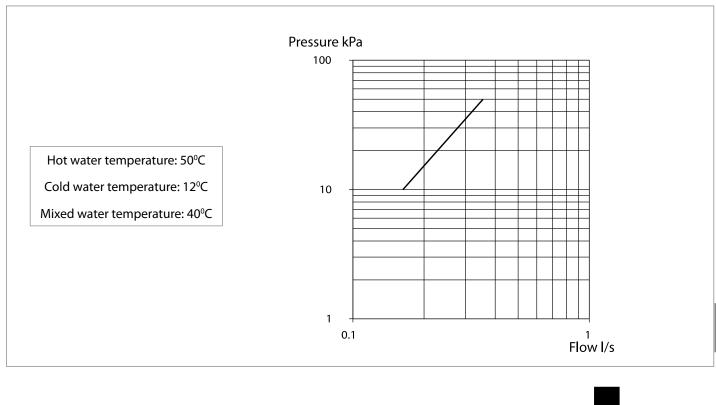
Frese Mixing Valve MixCon

Application

MixCon is a fail-safe mixing valve for hot and cold water.

Technote

If the cold water fails the valve shuts off the hot water supply within 4 seconds.


The mixed water temperature is set by turning the plastic control handle towards "+" to obtain higher temperatures, and towards "-" to obtain lower temperatures.

The temperature setting of the valve is locked by dismantling the handle and turning it 180°. Then replace the handle.

All MixCon mixing valves are tested separately and produced in accordance with the ISO 9001 Quality System to ensure uniform quality and functionality.

Pressure drop graph

11

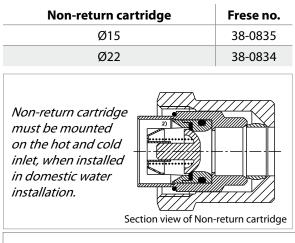
Frese Mixing Valve MixCon

Technical data - MixCon⁺

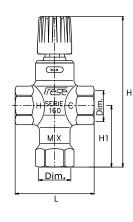
Technote

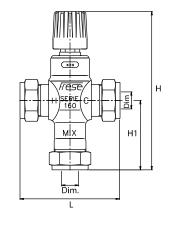
Valve body:	DR Brass		
Control handle:	EPDM		
Springs:	Stainless steel		
Element:	Wax		
O-rings:	EPDM		
Pressure range:			
Max. pressure:	10 bar		
Min. pressure:	0.2 bar		
Max. pressure ratio:	5:1 (hot: cold or cold: hot)		
Temperature:		Hot	
Mixed water temperature:	30 - 60ºC		
Hot water temperature:	50 - 80ºC		
Cold water temperature:	5 - 30°C		
	inst scalding is achieved if the It least 10ºC below the hot water		

Approval:


Approved by the Danish VA-Authorities

Product programme/Dimensions


Dimension	Connection	Frese no.	H1 [mm]	H [mm]	L [mm]	Weight [g]
DN20	DN20/fem/fem/fem*	47-2643	54	132	70	520
DN20	Ø15/Cu-tube	47-2677	61	139	88	690
DN20	Ø22/ Cu-tube	47-2688	62	140	90	645


* 3/4" galvanized pipe

Accessories for male/male

Frese A/S assumes no responsibility for errors, if any, in catalogues, brochures, and other printed matter. Frese A/S reserves the right to modify its products without prior notice, including already ordered products, if this does not alter existing specifications. All registered trademarks in this material are the property of Frese A/S. All rights reserved.

Mix

PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAR
Y.K. Tower (50 Storey)	Commercial Building	Bahrain	Shadeed Engineering	
KK3 Hotel	Hotel	Bahrain	Habib Mudara	2006
Pearl Tower	Residential Building	Bahrain	GEMAC/AI Hamad	2000
Amwaj Residential Islands	Residential Building	Bahrain	GEMAC	2007
Y.K. Tower (50 Storey)	Commercial Building	Bahrain	Shadeed Engineering	2007
Manial Sheha Private Villa	Private Villa	Egypt	Egypt National Co.	2005
Tanta University (Faculty of Pharmacy)	Auditoriums	Egypt	University Consultation Office	2000
Manial Sheha Private Villa	Private Villa	Egypt	Egypt National Co.	2001
Tanta University (Faculty of Pharmacy)	Auditoriums	Egypt	University Consultation Office	2000
Nile Pharma	Factory	Egypt	Saboure Consulting Office	2001
Alexandria Library Conference Hall	Conference Hall	Egypt	Hamza Consultants	2002
El Rabwa Social Club	Social Club	Egypt	Alexandria Real Estate Co.	2002
F16 Workshop Facility	Workshop		US Corps Of Engineers	2002
ab Organization for Development - Phase 1&2.	Head Quarters	Egypt Egypt	R & A Consultants	2002
Aswan Club Hotel - Aswan.	Hotel		Dr. Hakim El Afifi Office	2004
San Stefano Complex - Alexandria.	Hotel	Egypt	Dar Al Handasah	2005
		Egypt	Dar Al Handasah	2003
Sharm El-Sheikh Airport - New Terminal. National Bank Hospital.	Airport	Egypt	Khalid El Rai	2003
· · ·	Hospital	Egypt	Dar El Handasah.	
San Stefano Complex. Club of Aswan - Aswan.	Hotel Complex	Egypt		2005
	Hotel	Egypt	Afifi Consultancy	2005
National Bank Hospital.	Hospital	Egypt	C Group. Eng. Khalid El Rai	2005
Mosque.	Mosque	Egypt	Afifi Consultancy	2005
Bio Farm	Factory	Egypt	C Group. Eng. Khalid El Rai	2006
Shooting Club	Social Club	Egypt	Dr. Maged Nagm	2006
60 Bed Hospital	Hospital	Egypt	Eng. Abdelsalam Mahroos	2006
Smash Club (Smart Village)	Social Club	Egypt	Dr. Mohamed Mahmoud (Saboure)	2006
Pakin	Factory	Egypt	Owner	2006
Maradive	Office Building	Egypt	MAK (Marwan Karawya)	2007
Scandik	Hotel	Egypt	Crown Home	2007
Nagi Wali Villa	Private Villa	Egypt	Eng. Khaled Fateen	2008

Project references Middle East						
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAI		
Vodafon Building - C3	Office Building	Egypt	SHAKER Consultancy Group.	2008		
Carrefour	Hypermarket	Egypt	MED (Abd El-hamid Bakry)	2008		
El Obour Mall	Shopping Mall	Egypt	MED (Abd El-hamid Bakry)	2008		
Porto Marina	Residence Buildings	Egypt	MED (Abd El-hamid Bakry)	2008		
El Fath Building	Residence Building	Egypt	MED (Abd El-hamid Bakry)	2008		
Holiday Inn	Hotel	Jordan		2007		
Sheraton Hotel	Hotel	Kuwait	Keo international consultants	1994		
Sharq Waterfront	Commercial Building	Kuwait		1996		
Maternity Hospital	Hospital	Kuwait		1998		
Chamber of Commerce	Commercial Building	Kuwait		1996		
Gulf Investment Co.	Commercial Building	Kuwait		1998		
CRC Building		Kuwait		2000		
Public Authority for Civil Identity	Commercial Building	Kuwait		1997		
Bayan Palaces Complex	Eighteen Palaces	Kuwait	Keo international consultants	1986		
Kuwait University	School	Kuwait	Keo international consultants			
Bayan Palaces Complex	Eighteen Palaces	Kuwait	KEO International Consultants	1986		
Sheraton Hotel	Hotel	Kuwait	KEO International Consultants	1994		
Sharq Waterfront	Commercial Building	Kuwait		1996		
Chamber of Commerce	Commercial Building	Kuwait		1996		
Public Authority for Civil Identity	Commercial Building	Kuwait		1997		
Maternity Hospital	Hospital	Kuwait		1998		
Gulf Investment Co.	Commercial Building	Kuwait		1998		
CRC Building		Kuwait		2000		
Kuwait University	School	Kuwait	KEO International Consultants			
SAS Radisons Hotel	Hotel	Oman	TSI	2000		
Bala Mosque	Mosque	Oman	TSI	2000		
SAS Radisons Hotel	Hotel	Oman	TSI	2000		
Bala Mosque	Mosque	Oman	TSI	2000		
Hotel Intercontinental, Qatar	Hotel	Qatar	Dar Al Handasah	2000		
Airport expn., Qatar	Airport	Qatar	Meinhardt	2001		
Qatar Dist. Co.		Qatar	Meinhardt			

	,	ces Middle East		
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAF
Al-Ahli Hospital	Hospital	Qatar	Dar Al Handasah	2002
Well Cornell Medical College	School	Qatar	KEO	
Hotel Intercontinental, Qatar	Hotel	Qatar	Dar Al Handasah	2000
Airport expn., Qatar	Airport	Qatar	Meinhardt	2001
Al-Ahli Hospital	Hospital	Qatar	Dar Al Handasah	2002
Lagoon Plaza	Residential Building	Qatar	M&Z Partners	2007
City Center Phase 2	Shopping Mall	Qatar		2007
Qatar Dist. Co.		Qatar	Meinhardt	
Well Cornell Medical College	School	Qatar	KEO	
Burj Al-Mohammadiyah Project, Madinah		Saudi Arabia	Juffali Brothers	2000
Burj Al-Mohammadiyah Project, Madinah		Saudi Arabia	Juffali Brothers	2000
Carrefour Hypermarket	Commercial Building	Saudi Arabia	Techno	2007
Hajj Terminal, Jeddah	Airport	Saudi Arabia	Dar Al Handasah/Bin Laden	2008
Abu Dhabi Trade Center	Commercial Building	UAE	Cansult	2001
Dubai Airport (Plant room for Concourse)	Airport	UAE	Int'l Bectel	2000
G+M+12, Sharjah	Commercial Building	UAE	Newform	2001
G+M+2, Sharjah	Commercial Building	UAE	Newform	2001
Marina Mall, Abu Dhabi	Commercial Building	UAE	Gibbs Int'l	2000
Planet Optical Disc, Dubai Airport	Airport	UAE	Planet Optical (client)	2001
Al Ain Teaching Facility	School	UAE	Keo international consultants	2001
Marriot Hotel	Hotel	UAE	Syna Dev.	2000
Al Musalla Tower	Commercial Building	UAE	W.S.Atkins	2000
Sahara Centre, Sharjah	Commercial Building	UAE	Kennedy & Donkins	2001
The Gardens, Jebel Ali	District Cooling	UAE	ETA - Khatib & Alami	2001
Al Ain University	School	UAE	Keo international consultants	
Wafi Mall Extn., Dubai	Commercial Building	UAE	WSP	
Childrens City, Dubai	Commercial Building	UAE	SPP/Dubai Municipality	
Jumeirah Villa-2	Private Villa	UAE	Engineer's office	
Al Grome Plaza		UAE	Al Hamad	
The Tower (50 Storey)		UAE	Khatib & Alami	2002

DDOJECT	TVDE			VEAD
PROJECT	TYPE	AREA	CONSULTANT	YEAF
Al Quez Office Block	Office Building	UAE	Engineer's office	
World Trade Centre Hall 8	Commercial Building	UAE	RMJM	2002
World Trade Centre Halls 1 & 2	Commercial Building	UAE	RMJM	2002
Bakhita Building		UAE	Jain & Partners	
Emmar Bank	Bank	UAE	RMJM	
Arabian Ranches		UAE	Norr, Group	
B+G+M+26 Building for Al Sayegh		UAE	Gulf International	
B+G+M+23 Building for Al-Abbar		UAE	Gulf International	
B+G+M+4 for Dubai Real Estate Consultants		UAE	Al-Turath	
+M+7 Storey Building for Al-Attar Consultants		UAE	Al-Turath	
Villa for H H Sheikh Mohammed Bin Rashid	Private Villa	UAE	Engineer's office	
Nashad Building		UAE	Al Hamad	
Maqam Lab		UAE	Keo international consultants	
Hill Side Villas	Private Villa	UAE	ETA	
2 Villas at Safa	Private Villa	UAE	Gemac	
DWTC Hall 1 & 2		UAE	RMJM	
Mirage Hotel	Hotel	UAE	RPW	
Madinet Jumeirah	Hotel	UAE	RPW	
Dubai Marina		UAE	Mott Macdonald	2002
Womens College	School	UAE	Dar Al Handasah	2002
Womens Association		UAE	Shadeed Engineering	
Office Building	Office Building	UAE	Al Hamad	
Mirdiff Uptown House		UAE	Khatib & Alami	
Green Community Phase 1		UAE	Khatib & Alami	2004
Dubai Municipality Stores		UAE	Dubai Municipality project section	
Conference Palace Hotel PKG. 10A Hotels	Hotel	UAE	Keo international consultants	2003
Al Raha Hotel Bldg. & Shopping Complex		UAE	TEST	
Conference Palace PKG. 9 (Main Palace)		UAE	Keo international consultants	2003
Abu Dhabi Grand Hotel	Hotel	UAE	Keo international consultants	
Dubai Mens College	School	UAE	Dar Al Handasah	
Green Community Phase 1B (Villas)		UAE	Khatib & Alami	2004

		es Middle East		
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAR
reen Community (Hotel and Terraced Apartments)		UAE	S & D / Gemac	2004
Dubai Free Zone Real Estate		UAE	RMJM	
Reef Mall	Commercial Building	UAE	RMJM	
45 Storey Hotel	Hotel	UAE	Archon	
Al Meraikhi Bldg. Abu Dhabi		UAE	Gemac	
4 Bldgs. At Emarat Hills		UAE	lan Benham	
Villas at Emarat Hills		UAE	Frayland	
44 Storey Building		UAE	Arenco	
Cultural Centre	Commercial Building	UAE	Al - Hashmi	
Falcon Centre	Commercial Building	UAE	Gemac	
Garden's Shopping Mall	Commercial Building	UAE	Gemac	2004
Palm Jumeirah Crescent		UAE	Palm District Cooling	2004
Dubai Airport (Plant room for Concourse)	Airport	UAE	Int'l Bectel	2000
Marina Mall, Abu Dhabi	Commercial Building	UAE	Gibbs Int'l	2000
Marriot Hotel	Hotel	UAE	Syna Dev.	2000
Al Musalla Tower	Commercial Building	UAE	W.S.Atkins	2000
Abu Dhabi Trade Center	Commercial Building	UAE	Cansult	2001
G+M+12, Sharjah	Commercial Building	UAE	Newform	2001
G+M+2, Sharjah	Commercial Building	UAE	Newform	2001
Planet Optical Disc, Dubai Airport	Airport	UAE	Planet Optical (client)	2001
Al Ain Teaching Facility	School	UAE	Keo international consultants	2001
Sahara Centre, Sharjah	Commercial Building	UAE	Kennedy & Donkins	2001
The Gardens, Jebel Ali	District Cooling	UAE	ETA - Khatib & Alami	2001
Zabeel Palace Kitchen	Private Villa	UAE	Peter Huoson Buckle & Partners	2001
The Tower (50 Storey)	Residential Building	UAE	Khatib & Alami	2002
World Trade Centre Hall 8	Commercial Building	UAE	RMJM	2002
World Trade Centre Halls 1 & 2	Commercial Building	UAE	RMJM	2002
Dubai Marina		UAE	Mott Macdonald	2002
Womens College	School	UAE	Dar Al Handasah	2002
Conference Palace Hotel PKG. 10A Hotels	Hotel	UAE	Keo international consultants	2003

	Project reference	es Middle East		
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAR
Green Community Phase 1		UAE	Khatib & Alami	2004
Green Community Phase 1B (Villas)		UAE	Khatib & Alami	2004
Green Community (Hotel and Terraced Apartments)		UAE	S & D / Gemac	2004
Garden's Shopping Mall	Commercial Building	UAE	Gemac	2004
Palm Jumeirah Crescent		UAE	Palm District Cooling	2004
Motor City	Commercial, Residential & Hotels	UAE	WSP/Khatib & Alami/Edara	2007
Dubai Marina Quays	Residential & Commercial	UAE	Arif & Bintoak/Al Hamad	2007
Green Community Phase 2	Residential & Commercial	UAE	Khatib & Alami	2007
Julfar Tower		UAE		2007
Millenium Hotel		UAE		2007
Al Ain University	School	UAE	Keo international consultants	
Wafi Mall Extn., Dubai	Commercial Building	UAE	WSP	
Childrens City, Dubai	Commercial Building	UAE	SPP/Dubai Municipality	
Jumeirah Villa-2	Private Villa	UAE	Engineer's office	
Al Grome Plaza		UAE	Al Hamad	
Al Quez Office Block	Office Building	UAE	Engineer's office	
Bakhita Building		UAE	Jain & Partners	
Emmar Bank	Bank	UAE	RMJM	
Arabian Ranches		UAE	Norr, Group	
B+G+M+26 Building for Al Sayegh		UAE	Gulf International	
B+G+M+23 Building for Al-Abbar		UAE	Gulf International	
B+G+M+4 for Dubai Real Estate Consultants		UAE	Al-Turath	
G+M+7 Storey Building for Al-Attar Consultants		UAE	Al-Turath	
Villa for H H Sheikh Mohammed Bin Rashid	Private Villa	UAE	Engineer's office	
Nashad Building		UAE	Al Hamad	
Maqam Lab		UAE	Keo international consultants	
Hill Side Villas	Private Villa	UAE	ETA	
2 Villas at Safa	Private Villa	UAE	Gemac	
DWTC Hall 1 & 2		UAE	RMJM	
Mirage Hotel	Hotel	UAE	RPW	
Madinet Jumeirah	Hotel	UAE	RPW	

	Project reference	ces Middle Eas	t	
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAF
Womens Association		UAE	Shadeed Engineering	
Office Building	Office Building	UAE	Al Hamad	
Mirdiff Uptown House		UAE	Khatib & Alami	
Dubai Municipality Stores		UAE	Dubai Municipality project section	
Al Raha Hotel Bldg. & Shopping Complex		UAE	TEST	
Abu Dhabi Grand Hotel	Hotel	UAE	Keo international consultants	
Dubai Mens College	School	UAE	Dar Al Handasah	
Dubai Free Zone Real Estate		UAE	RMJM	
Reef Mall	Commercial Building	UAE	RMJM	
45 Storey Hotel	Hotel	UAE	Archon	
Al Meraikhi Bldg. Abu Dhabi		UAE	Gemac	
4 Bldgs. At Emarat Hills		UAE	lan Benham	
Villas at Emirates Hills		UAE	Frayland	
44 Storey Building		UAE	Arenco	
Cultural Centre	Commercial Building	UAE	Al - Hashmi	
Falcon Centre	Commercial Building	UAE	Gemac	
Dubai Health Care City	Office Complex	UAE		2007
Marina Quays	Residential Tower	UAE	Emaar	2007
Julfar Tower	Mixed Use Complex	UAE		2007
Millenium Hotel Extension	Hotel	UAE		2007
Dammam Towers	Mixed Use Complex	UAE	Buro Happold	2008
Horizon Towers	Mixed Use Complex	UAE		2008
Emirates Park Hotel	Hotel	UAE		2008
Business Park	Mixed Use Complex	UAE		2008

	_		ences Europe		
PROJECT	TYPE	AREA	CONSULTANT	CONTRACTOR	YEAR
Landesbank Kiel	Bank	Denmark	Jørgen Wessberg		
Mercedes Danmark	Commercial Building	Denmark	Carl Bro		
Nokia	Commercial Building	Denmark	Steensen & Varming		
A.P. Møller (Esplanaden)	Commercial Building	Denmark	Carl Bro		
Terminal 3, Kastrup	Airport	Denmark	Steensen & Varming		
Baldersbo	Residential area	Denmark	Henrik Larsen		
Glostrup Boligselskab	Residential area	Denmark	Danacon		
Ingeniør skolen	School/University	Denmark	Cowi		
Odense Universitets Hospital	Hospital	Denmark	Cowi		
Glumsøparken	Residential area	Denmark	КАВ		
TV2	TV-station	Denmark	NCC		
Danmarks Radio	TV-station	Denmark	Rambøll		
H & S Domicil	Society	Denmark	Steensen & Varming		
Hotel Hilton	Hotel	Denmark	Niras		
Hotel Marriott	Hotel	Denmark	Birch & Krogboe		
Kommunernes Landsforening	Society	Denmark	Ha Ca Frø		
Statoil Domicil	Commercial Building	Denmark	Birch & Krogboe		
Netto Centrallager	Commercial Building	Denmark	Birch & Krogboe		
Copenhagen University	School/University	Denmark	Cowi		
Rema 1000 Hovedlager	Commercial Building	Denmark	Skanska		
CCI Europe	Commercial Building	Denmark	Carl Bro		
Skanska Domicil	Commercial Building	Denmark	Cowi		
Maersk Data	Commercial Building	Denmark	Hes Klima KB		
Cowi Domicil Lyngby	Commercial Building	Denmark	Skanska		
Gram Fabrikkerne	Industry	Denmark	Rambøll		
Blücher	Commercial Building	Denmark	Rambøll		
Fisketorvet	Shopping Mall	Denmark	Skanska		
Tiscali/SAP	Commercial Building	Denmark	Midtconsult A/S		
Sparekassen Kronjylland	Bank	Denmark	Rambøll		
4YOU Hovedlager	Commercial Building	Denmark	Brøndum		
Bilka Horsens	Shopping Mall	Denmark			

	Pi	roject refer	ences Europe		
PROJECT	ТҮРЕ	AREA	CONSULTANT	CONTRACTOR	YEAR
Sydbank	Bank	Denmark	Esbensen A/S		
Vesterbro Boligforening	Residential area	Denmark			
Arla Ostemejeri	Industry	Denmark	Rambøll		
Ro's Torv	Shopping Mall	Denmark	Henrik Larsen		
BNP Paribas Headquarter, Paris	Commercial Building	France			
Atlantic building, Paris	Commercial Building	France			
Jewel of the sea	Cruise ship	Germany			
Hangar Fraport Frankfurt	Airport	Germany		AGO	2007
Hinitsa Hotel	Hotel	Greece	Envirotech		2000
Portohelli Hotel	Hotel	Greece	Envirotech		2001
Allied Irish Bank headquarter, Dublin	Commercial Building	Ireland			
Athlone Town Centr	Shopping Centre	Ireland	R. N. Murphy	Mercury Engineering	2007
Marynarska Business Park	Commercial Building	Poland	Danpo		2008
Trinity Park Phase II	Commercial Building	Poland	Danpo		2007
Office Park	Commercial Building	Poland	Danpo		2007
CER Poczta Polska (Polish Postal Services)	Warehouse hall	Poland	Danpo		2006
Pasaz Grunwaldzki (the Grunwaldzki passage)	Shopping centre	Poland	Danpo		2007
Akademia Swietokrzyska (the Swietokrzyska Academy)	School/University	Poland	Danpo		2006
Centro Colombo, Lissabon	Shopping Mall	Portugal			
Portugal Telecom headquarter	Commercial Building	Portugal			
Inclima		Spain			2004
Sistemec/Residencia	Residential area	Spain			2004
Obra		Spain			2004
Geriatrico en vigo	Residence for old people	Spain			2004
Hotel Elba en Almeria	Hotel	Spain			2004
Mc Donalds Baricentro	Restaurant	Spain			2004
Mc Donalds zubiarte	Restaurant	Spain			2004
Residencia de estudiantes	Residence of students	Spain			2004
Gonvarri		Spain			2004
Hotel don teodoro en la alberca	Hotel	Spain			2004
Centro civico Capiscol	Civic Center	Spain			2004

			ences Europe		
PROJECT	ТҮРЕ	AREA	CONSULTANT	CONTRACTOR	YEAR
Tienda	Shopping Mall	Spain			2004
Sabeco		Spain			2004
Aparthotel	Hotel	Spain			2004
53 Viendas	Residential area	Spain			2004
Land Hotel	Hotel	Spain			2005
Hotel Ribera de duero	Hotel	Spain			2005
VITONIA BEACH CLUB	Residence	Spain		VECLIMA	2008
HOTEL BITACORA	Hotel	Spain		S. ARENCIBIA	2008
CC PALMERAS FUERTEVENTURA	Commercial Building	Spain		HUMICLIMA	2008
Obra HOTEL SUNWING	Hotel	Spain		INTERCLIMA DIEZ, S.L., ARBONA PIZA	2008
Obra HOTEL PRESTIGE LUCENA	Hotel	Spain		ARBONA PIZA - ICLIMA	2008
bra HOTEL FLAMENCO CUNIL - CADIZ	Hotel	Spain		ARBONA PIZA - HUMICLIMA	2008
BIBLIOTECA CIUDAD REAL	Library	Spain		ENERMES CLM	2008
UPM-EDIFICIO LOM	School/University	Spain		MAINSA	2008
UPM-EDIFICIO AT	School/University	Spain		MAINSA	2008
UPM-EDIFICIO BT	School/University	Spain		MAINSA	2008
UPM-EDIFICIO FGP	School/University	Spain		MAINSA	2008
UPM-EDIFICIO LEF	School/University	Spain		MAINSA	2008
UPM-EDIFICIO LMA	School/University	Spain		MAINSA	2008
UPM-EDIFICIO SC	School/University	Spain		MAINSA	2008
RESIDENCIA SAN CLEMENTE	Residence	Spain		2C2E	2008
BODEGA MONTE LA REINA	Wine cellar	Spain		ENSITEC	2008
BODEGA MUDARA	Wine cellar	Spain		ENSITEC	2008
REHABILITACIÓN PALACIO DE COMUNICACIONES	Public building	Spain		INTERNACIONAL TECAIR	2008
COLEGIO PARACUELLOS	School/University	Spain		BENITO HERRERA	2008
PLANTA PANELES FOTOVOLTAICOS-ORENSE	Solar instalation	Spain		KLIMACAL	2008
COLEGIO ARANJUEZ	School/University	Spain		BENITO HERRERA	2008
CENTRO ENFERMEDADES RARAS	Health center/ Hospital	Spain		COFRICO	2008
238 VIVI TORREJON	Flats	Spain		INSSERCO	2008
SEDE BBVA SEVILLA	Bank	Spain		FRINORTE	2008
C.C. ARANJUEZ PLAZA	Commercial Building	Spain		ANCIN CLIMA	2008

			erences Europe		
PROJECT	ТҮРЕ	AREA	CONSULTANT	CONTRACTOR	YEA
HOTEL EN LEON	Hotel	Spain		COFRICO	2008
Kv. Hälleberget	Residential area	Sweden	JF Jansson Rör AB		2003
Polykemi AB	Industry	Sweden	Anderssons Rörinstallationer AB		2003
Kv. Idémannen	Science Park	Sweden	Sweco Theorells		2003
Saab	Industry	Sweden	YIT Sverige AB		2003
Bergshamra	Residential area	Sweden	YIT Sverige AB		2004
Kv. Klostret	Shopping Mall	Sweden	NCC Construction		2004
Kv. Osthyveln	Residential area	Sweden	NVS Installation AB		2004
Kv. Anna	Residential area	Sweden	GE VVS-Projektering AB		2004
Kv. Nunnan	Residential area	Sweden	GE VVS-Projektering AB		2004
Kv. Samson	Residential area	Sweden	Råå VVS-Byrå AB		2004
Cloetta Center	Sports facility	Sweden	NVS Installation AB		2004
Sannegårdshamnen 2	Industry	Sweden	EPG Konsult Samordnad VVS Teknik		2004
Kv. Gulsparven	Commercial Building	Sweden	Bengt Dahlgren AB		2004
Mjärdevi center, Linköping	Commercial Building	Sweden			
The Marmara Hotel	Hotel	Turkey			
Kirklees Schools PFI	School/University	UK		Airedale Mechanical	
Copthorne Hotel	Hotel	UK	Applied Energy	All Group	
Hilton Hotel	Hotel	UK	Applied Energy	All Group	
Marriot Hotel	Hotel	UK	Applied Energy	All Group	
Leicester LIFT	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Hardman Street	Commercial Building	UK	Waterman Gore	NG Bailey	
Comben House		UK		Haden Young	
Claredon Road		UK		Watsons	
New England Sea Food	Commercial Building	UK		Yorkshire Building	
Bristol Harbourside	Residential area	UK	Hoare Lea	Crown House Tech.	
Millbank EPH		UK	SI Sealy	Cross Services	
Beaconsview EPH		UK	SI Sealy	Cross Services	
Castleford EPH		UK	SI Sealy	Cross Services	
St James Oncology	Hospital	UK	Hoare Lea	Rotary Services	
IDCC LIFT		UK	EP consulting/Hulley & Kirkwood	J Tomlinson	

PROJECT	ТҮРЕ	AREA	CONSULTANT	CONTRACTOR	YEAR
					IEAR
St Peters LIFT	School/University	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Gretna Green Hotel	Hotel	UK	Pricewise D&B	Pricewise	
Merrill College	School/University	UK	Pick Everard	Rosser & Russel	
Worcester BOSCH	Industry	UK		ESDP	
EDS Hook		UK		Westco	
Vencourt Hotel	Hotel	UK	Applied Energy	All Group	
ExxonMobil	Industry	UK	Foreman Roberts	Michael J Lonsdale	
D.V.L.A. Swansea		UK	Hoare Lea	Lorne Stewart	
Geest Foods		UK		Grenco Refrigeration	
Bernard Matthews		UK		Grenco Refrigeration	
Northumberland House	Commercial Building	UK	Elementa	Meica Services	
Merryfield Pre-School	School/University	UK		Merryfield Pre-School	
Heron House	Hotel	UK	IEI Building Services	Trox	
3 Olaf Street		UK	ARUP	Borahurst Ltd	
Unilever	Industry	UK		Grenco Refrigeration	
Farnborough Business Park	Commercial Building	UK	Foreman Roberts	Pipe Center-Slough	
Marble Arch Marriot Hotel	Hotel	UK	Applied Energy	All Group	
Mecca Bingo		UK		Warrens-Leeds	
Blenheim Business Park	Commercial Building	UK	Pricewise	David Ford Mech & Elec	
Hilton Metropole	Hotel	UK	Applied Energy	All Group	
Long Eaton Health Centre	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Oakington Reception		UK		GSL UK Ltd	
Westcotes Primary Care	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Swadlincote Primary Care	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Alfreton Primary Care	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Navigation Primary School	School/University	UK	SI Sealy	A. Longworth & Sons Ltd	
Austin Estates Primary		UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
St. Pauls Square		UK	Buro Happold	Marflow Engineering Ltd.	
Shell centre		UK	Hurley palmer Flatt	Shepherd Engineering	
Willowgarth High School	School/University	UK	EP consulting/Hulley & Kirkwood	J Tomlinson	
Coleman Street		UK	EP consulting/Hulley & Kirkwood	J Tomlinson	

Project references Europe							
PROJECT	ТҮРЕ	AREA	CONSULTANT	CONTRACTOR	YEAR		
Lily II		UK		Marflow Engineering Ltd.			
Orchard School	School/University	UK		Silverback Bldg Serv Ltd			
Pomona Street		UK	Hoare Lea	Mitie Engineering			
Dartford Innov Center		UK		Marflow Engineering Ltd.			
Vincent Square		UK		Meica Services			
Moy Park Ltd		UK		Grenco Refrigeration			
Humberstone Health centre	Health center	UK	EP consulting/Hulley & Kirkwood	J Tomlinson			
Homeserve Phase 4		UK		Marflow Engineering Ltd			
Aldgate Union	Commercial Building	UK	WSP	MJN Colston			
Jarvis Ramada	Hotel	UK	Applied Energy	All Group			
Hilton Hotel	Hotel	UK	Applied Energy	All Group			
1 Millharbour, London	Residential Tower	UK	Hoare Lea	Haydon Mechanical Electrical	2007		
160 Tooley Street, London	Office Building	UK	ARUP	Crown House Technologies	2007		
Warwick Court, London	Office Building	UK	Sinclair Knight Mertz	WESTCO	2007		
Banside Leisure Centre, Yorkshire	Leisure Centre	UK		Yorkshire Building Services	2007		
22-26 Cursitor Street, London	Office Building	UK	Chapman Bathurst	MJ Lonsdale	2007		
22 Marsh Wall, London	Residential Tower	UK	Hoare Lea	Haydon Mechanical Electrical	2008		
Watermark Place, London	Office Building	UK	Waterman Building Services	NG Bailey	2008		

	Project references Far East							
PROJECT	ТҮРЕ	AREA	CONSULTANT	YEAR				
Sudan Water Treatment Plant	Plant	Malaysia		2005				
Kuittho, Dewan Kuliah - Phase 2	School	Malaysia		2005				
Shek Wu Hui Municipal Services building	Commercial building	Hong Kong						
Northbank Towers, Melbourne	Commercial building	Australia	Crane Distribution	2008				

Frese OPTIMA A new generation of dynamic valves

Frese Optima is designed to combine automatic balancing and absolute modulating control regardless the preset flow.

·Max diff. pressure: 400 kPa
·Temperature: 0 to 120°C
·Dimensions: DN15-DN50
·Material: DZR brass
·Static pressure: PN25

·For cooling and heating

The innovative design of Frese Optima introduces an intelligent control valve that adjusts automatically to the preset flow in order to provide full modulating control. When the installer presets the valve according to the maximum designed flow, the stroke of the control valve remains the same thus providing 100% modulating control. In practical terms, Frese Optima ensures that there isn't any overflow and that below the design flow the actuator has absolute authority. Furthermore, Frese Optima combines all those features that are necessary to ease the work of designers and installers: flushing is possible due to the cartridge solution selected for the dynamic balancing part of the valve; the wide (up to 400kPa) differential pressure range meets the requirements of most applications; the compact design and the user-friendly presetting unit guarantee easy installation and commissioning.

Frese balances efficiently HVAC systems all around the world. From cooling systems in the Middle East to heating systems in Scandinavia, Frese's products transform state of the art technology into every day solutions.

Reference Project

Marynarska Business Park, Warsaw, Poland

This office building is one of the most important office investments in Poland in 2009. The total office space exceeds 45,000 m². The complex consists of four interconnected buildings, three low-rise buildings and a tower The elevation is made from huge glass fragments finished with sandstone and steel. Inside the complex there is a green patio and a fountain. In addition to unique architectural features, this office building complies with the highest quality and technical standards.

3000 Frese EVA valves, with cartridges, p/t plugs and actuators on/off 230 V with the flow from 25 l/h to 2448 l/h, were selected to ensure the hydraulic balance of the heating/cooling circuit and the right temperature everywhere in the building. There was no need to install balancing valves in every section or on each storey, so expensive, time-consuming manual adjustment was avoided. Frese products was selected as the best technical and most economical solution.

For more information see: www.frese.eu

I_Tebodin SAP.Projekt

